HLA-A69

HLA-A69 (A69) is a human leukocyte antigen serotype within HLA-A serotype group. The serotype is determined by the antibody recognition of α69 subset of HLA-A α-chains. For A69, the alpha "A" chain are encoded by the HLA-A*69 allele group and the β-chain are encoded by B2M locus.[1] This group currently is dominated by A*6901. A69 and A*69 are almost synonymous in meaning. A69 is a split antigen of the broad antigen serotype A28. A69 is a sister serotype of A68.

HLA-A69
(MHC Class I, A cell surface antigen)
HLA-A69
About
Proteintransmembrane receptor/ligand
Structureαβ heterodimer
SubunitsHLA-A*69--, β2-microglobulin
Older namesA28
Subtypes
Subtype
allele
Available structures
A69 *6901
{{{cNick2}}} *69{{{cAllele2}}}
{{{cNick3}}} *69{{{cAllele3}}}
{{{cNick4}}} *69{{{cAllele4}}}
Alleles link-out to IMGT/HLA database at EBI

A69 is more common in Levant. A69 (A*6901) is a derivative of the A*6801 allele that has undergone gene conversion with A*02. The recombination took place no more than 330,000 years ago[2].

Serotype

A69 recognition of some HLA A*69 gene products[3]
A*69 A69 A28A68A2 Sample
allele%%%% size (N)
*690175636289

A69 is poor, with low specific detection, high non-specific identification by A28, and false recognition by A68 and A2.

Distribution

HLA A*6901 frequencies
freq
ref.Population(%)
[4] North Isl. (Cape Verde)4.0
[5] Druse-Arab (Israel)3.0
[4]South Isl. (Cape Verde)2.4
[6] Mossi (Burkino Faso)1.9
[7] Bulgaria1.8
[8] Jew (Israel)1.2
[9] Tunis (Tunisia)1.1
[10] Bergamo (Italy)1.1
[11] N. Delhi (India)1.1
[12] Amman (Jordon)1.0
[13] Sardinia (Italy)1.0
[14] Central Portugal1.0
[14]Shanghai (China)0.7
[15] Girona (Catalon, Spain)0.6
[16] Baloch (Iran)0.6
[14]Greece0.6
[14]Czech0.5
[14]SE France0.4
[17] Kampala (Uganda)0.3
[14]N. Greece0.3
[14]Romania0.3
[14]Sudanese0.25
[14]U. Arab Emerates0.25
[14]Japan0.0
[14]Croatia0.0
[14]N. Ireland0.0
[14]Zambia0.0
[14]Luo (Kenya)0.0
[14]Nandi (Kenya)0.0
[14]Bandiagara (Mali)0.0

Distribution of A69 places nodal center in the Levant, but high levels in West Africa. The model of human genetic origin places first migrations from Eastern Africa. However, in many east African populations the frequency of A69 is zero. A more consistent model of A69 distribution is either a subsequent migration from West Africa, supported by A36 and HLA DR3-DQ2. The higher levels in the Gaza Palestinians supports this hypothesis.

Disease associations

A69 may be associated with sarcoidosis.[18]

gollark: Oops too many newlines.
gollark: Quoted from my notes:The relevant factors for course choice are probably something like this, vaguely in order: “personal fit” - how much I'll actually like it. This is quite hard to tell in advance. During the Y11 careers interview I was recommended some kind of trial thing for engineering, but I doubt that's on now, like many other things. Probably more important than other things, as I'd spend 3-5 years on said course, will perform better if I do enjoy it, and will probably not get much use out of studying a subject I would not like enough to do work related to. flexibility/generality - what options are opened by studying this stuff? Especially important in a changing and unpredictable world. how hard a subject is to learn out of university - relates to necessity of feedback from people who know it much better, specialized equipment needed, availability of good teaching resources, etc. Likely to decline over time due to the internet/modern information exchange systems and advancing technology making relevant equipment cheaper. earning potential - how much money does studying this bring? I don't think this is massively significant, it's probably outweighed by other things quite rapidly, but something to consider. Apparently high for quantitative and applied subjects. entry requirements - how likely I am to be able to study it. There are some things I probably cannot do at all now, such as medicine, but I didn't and don't really care about those, and there shouldn't be many. Most of the high-requirement stuff is seemingly available with more practical ones at less prestigious universities, which is probably fine.
gollark: Replying to https://discord.com/channels/346530916832903169/348702212110680064/759121895022002206Well, yes, somewhat, BUT! There are other considerations™.
gollark: Weird.
gollark: Replying to https://discord.com/channels/346530916832903169/348702212110680064/759121667070492682<@!332271551481118732> Yes, possibly.

References

  1. Arce-Gomez B, Jones EA, Barnstable CJ, Solomon E, Bodmer WF (February 1978). "The genetic control of HLA-A and B antigens in somatic cell hybrids: requirement for beta2 microglobulin". Tissue Antigens. 11 (2): 96–112. doi:10.1111/j.1399-0039.1978.tb01233.x. PMID 77067.
  2. Holmes N, Parham P (1985). "Exon shuffling in vivo can generate novel HLA class I molecules". EMBO J. 4 (11): 2849–54. PMC 554588. PMID 3877632.
  3. Allele Query Form IMGT/HLA - European Bioinformatics Institute
  4. Spínola H, Bruges-Armas J, Middleton D, Brehm A (2005). "HLA polymorphisms in Cabo Verde and Guiné-Bissau inferred from sequence-based typing". Hum. Immunol. 66 (10): 1082–92. doi:10.1016/j.humimm.2005.09.001. PMID 16386651.
  5. Proceedings of IHW Workshop, Seattle 2002, via http://www.allelefrequencies.net via Middleton D, Menchaca L, Rood H, Komerofsky R (2003). "New allele frequency database: http://www.allelefrequencies.net". Tissue Antigens. 61 (5): 403–7. doi:10.1034/j.1399-0039.2003.00062.x. PMID 12753660. External link in |title= (help)
  6. Modiano D, Luoni G, Petrarca V, et al. (2001). "HLA class I in three West African ethnic groups: genetic distances from sub-Saharan and Caucasoid populations". Tissue Antigens. 57 (2): 128–37. doi:10.1034/j.1399-0039.2001.057002128.x. PMID 11260507.
  7. Ivanova M, Rozemuller E, Tyufekchiev N, Michailova A, Tilanus M, Naumova E (2002). "HLA polymorphism in Bulgarians defined by high-resolution typing methods in comparison with other populations". Tissue Antigens. 60 (6): 496–504. doi:10.1034/j.1399-0039.2002.600605.x. PMID 12542743.
  8. Maccabi Healthcare Services Histocompatibility Dept. Israel, bone marrow registry, via http://www.allelefrequencies.net
  9. Hajjej A, Kâabi H, Sellami MH, et al. (2006). "The contribution of HLA class I and II alleles and haplotypes to the investigation of the evolutionary history of Tunisians". Tissue Antigens. 68 (2): 153–62. doi:10.1111/j.1399-0039.2006.00622.x. PMID 16866885.
  10. DW, Gjertson; PI, Terasaki (1998). HLA 1998: proceedings of the twelfth International Histocompatibility Workshop and Conference. ASHI. via http://www.allelefrequencies.net
  11. Rani R, Marcos C, Lazaro AM, Zhang Y, Stastny P (2007). "Molecular diversity of HLA-A, -B and -C alleles in a North Indian population as determined by PCR-SSOP". Int. J. Immunogenet. 34 (3): 201–8. doi:10.1111/j.1744-313X.2007.00677.x. PMID 17504510.
  12. Sánchez-Velasco P, Karadsheh NS, García-Martín A, Ruíz de Alegría C, Leyva-Cobián F (2001). "Molecular analysis of HLA allelic frequencies and haplotypes in Jordanians and comparison with other related populations". Hum. Immunol. 62 (9): 901–9. doi:10.1016/S0198-8859(01)00289-0. PMID 11543892.
  13. Grimaldi MC, Crouau-Roy B, Amoros JP, et al. (2001). "West Mediterranean islands (Corsica, Balearic islands, Sardinia) and the Basque population: contribution of HLA class I molecular markers to their evolutionary history". Tissue Antigens. 58 (5): 281–92. doi:10.1034/j.1399-0039.2001.580501.x. PMID 11844138.
  14. Middleton D, Menchaca L, Rood H, Komerofsky R (2003). "New allele frequency database: http://www.allelefrequencies.net". Tissue Antigens. 61 (5): 403–7. doi:10.1034/j.1399-0039.2003.00062.x. PMID 12753660. External link in |title= (help)
  15. Comas D, Mateu E, Calafell F, et al. (1998). "HLA class I and class II DNA typing and the origin of Basques". Tissue Antigens. 51 (1): 30–40. doi:10.1111/j.1399-0039.1998.tb02944.x. PMID 9459501.
  16. Farjadian S, Naruse T, Kawata H, Ghaderi A, Bahram S, Inoko H (2004). "Molecular analysis of HLA allele frequencies and haplotypes in Baloch of Iran compared with related populations of Pakistan". Tissue Antigens. 64 (5): 581–7. doi:10.1111/j.1399-0039.2004.00302.x. PMID 15496201.
  17. Cao K, Moormann AM, Lyke KE, et al. (2004). "Differentiation between African populations is evidenced by the diversity of alleles and haplotypes of HLA class I loci". Tissue Antigens. 63 (4): 293–325. doi:10.1111/j.0001-2815.2004.00192.x. PMID 15009803.
  18. Bilir M, Sipahi S, Yilmaz E, et al. (2007). "Analysis of HLA antigens in Turkish sarcoidosis patients". South. Med. J. 100 (4): 356–9. doi:10.1097/SMJ.0b013e31802f3763. PMID 17458393.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.