Haplogroup H (Y-DNA)

Haplogroup H (Y-DNA), also known as H-L901/M2939 is a Y-chromosome haplogroup.

Haplogroup H (Y-DNA)
Possible time of origin~48,500 ybp
Possible place of originSouth Asia or South-West Asia
AncestorHIJK
DescendantsH1 (L902/M3061);
H2 (P96);
H3 (Z5857)
Defining mutationsL901/M2939
Highest frequenciesSouth Asians, Khmer people and Romani people

The primary branch H1 (H-M69) and its subclades is one of the most predominant haplogroups amongst populations in South Asia, particularly its descendant H1a1 (M52). A primary branch of H-M52, H1a1a (H-M82), is found commonly among the Romani people, who originated in South Asia and migrated into the Middle East and Europe, around the beginning of the 2nd millennium CE and the Khmer people who got under influence from Indian populations.[1] The much rarer primary branch H3 (Z5857) is also concentrated in South Asia.

However, the primary branch H2 (P96) seems to have been found in sparse levels primarily in Europe and West Asia since prehistory. It has been found in remains from the Linear Pottery culture and Neolithic Iberia.[2][3] H2 likely entered Europe during the Neolithic with the spread of agriculture.[3] Its present distribution is made up of various individual cases spread out throughout Europe and West Asia today.[4]

Structure

H-L901/M2939 is a direct descendant of Haplogroup GHIJK. There are, in turn, three direct descendants of H-L901/M2939 – their defining SNPs are as follows:

  • H1 (L902/M3061)
    • H1a previously haplogroup H1 (M69/Page45, M370)
    • H1b B108, Z34961, Z34962, Z34963, Z34964
  • H2 previously haplogroup F3,[5] (P96, L279, L281, L284, L285, L286, M282)
    • H2a FGC29299/Z19067
    • H2b Z41290
    • H2c Y21618, Z19080
  • H3 (Z5857)
    • H3a (Z5866)
    • H3b (Z13871)


Ancient distribution

H-L901/M2939 is believed to have split from HIJK 48,500 years before present.[6] Its probable site of introduction is South Asia, since it is highly concentrated there. It seems to represent the main Y-Chromosome haplogroup of the paleolithic inhabitants of the Indian Subcontinent.

H1a

With limited ancient DNA testing in South Asia, accordingly there is a limited amount of ancient samples for H1a, despite it being a populous and well distributed haplogroup today. The first set of ancient DNA from South Asia was published in March 2018.[7] 65 samples were collected from the Swat Valley of northern Pakistan, 2 of which belonged to H1a.[7]

H1a ancient samples
Date Subclade Location Country Culture Accompanying haplogroups Source
1100-900 BC H1a1 Gogdara, Swat Valley Pakistan Udegram Iron age E1b1b1b2, E1b1b1b2a [7]
1000-800 BC H1a1 Barikot, Swat Valley Pakistan Barikot Iron age [7]

H2

The earliest sample of H2 is found in the Pre-Pottery Neolithic B culture of the Levant 10,000 years ago.[8] From ancient samples. it is clear that H2 also has a strong association with the spread of agriculture from Anatolia into Europe, and is commonly found with haplogroup G2a.[9] H2 was found in Neolithic Anatolia, as well as in multiple later Neolithic cultures of Europe, such as the Vinča culture in Serbia,[10] and the Megalith culture of Western Europe.[10]

H2 ancient samples
Date Location Country Culture Accompanying haplogroups Source
7300-6750 BC Motza Israel Levantine Neolithic (PPNB) E1b1b1, T1a1, T1a2a (PPNB from Jordan) [8]
6500-6200 BC Barcin site, Yenişehir Valley Turkey Anatolian Neolithic G2a, I2C, C1a, J2a [11]
6500-6200 BC Barcin site, Yenişehir Valley Turkey Anatolian Neolithic G2a, I2C, C1a, J2a [11]
5832–5667 BC Старчево Serbia Vinca [10]
5702–5536 BC Старчево Serbia Vinca [10]
5400-5000 BC Szemely Hungary Vinča G2a2a, G2a2b2a1a [10]
3900–3600 BC La Mina site, Soria Spain Megalithic I2a2a1 [10]
3336-3028 BC Dzhulyunitsa Bulgaria Bulgaria_BA G2a2a1a2 [12]
2899–2678 BC El Portalon cave Spain Pre-Bell Beaker I2a2a [2]
2470-2060 BC Budapest-Bekasmegyer Hungary Kurgan Bell Beaker R1b1a1a2a1a2b1 [13]

Modern distribution

H1a

South Asia

H-M69 is common among populations of India, Sri Lanka, and Nepal, with lower frequency in Afghanistan and Pakistan.[14] The highest frequencies of H-M69 are in India, especially in southern India at (32.9%).[1][15] and H-M52 among Kalash (20.5%) in Pakistan.[16][17]

Haplogroup H is typically found among Dravidian populations in the Indian subcontinent, especially in South India and Sri Lanka. In Europe it is found almost exclusively among the Gypsies (Romani), who belong predominantly (between 15% and 50%) to the H1a (M82) subclade of Indian origin. The highest frequencies of haplogroup H among non-Romani Europeans are found in regions with large Romani populations, such as Romania, Slovakia, the southern Balkans, and Andalusia, suggesting that these lineages are also of Romani origin.

Haplogroup H-M69 has been found in:

  • South India – 27.2% (110/405) of a sample of unspecified ethnic composition.[18][19] Another study has found haplogroup H-M69 in 26.4% (192/728) of an ethnically diverse pool of samples from various regions of India.[1]
  • Sri Lanka – in 25.3% (23/91) of a sample of unspecified ethnic composition[18][19] and in 10.3% (4/39) of a sample of Sinhalese.[17]
  • Nepal – one study has found Haplogroup H-M69 in approximately 12% of a sample of males from the general population of Kathmandu(including 4/77 H-M82, 4/77 H-M52(xM82), and 1/77 H-M69(xM52, APT)) and 6% of a sample of Newars (4/66 H-M82).[20] In another study, Y-DNA that belongs to Haplogroup H-M69 has been found in 25.7% (5/37 = 13.5% H-M69 from a village in Morang District, 9/57 = 15.8% H-M69 from a village in Chitwan District, and 30/77 = 39.0% H-M69 from another village in Chitwan District) of Tharus in Nepal.[21]
  • Pakistan – in 4.1% Burusho, 20.5% Kalash, 4.2% Pashtun, and 6.3% in other Pakistanis.[1][16] Another study has found haplogroup H-M69 in approximately 8% (3/38) of a sample of Burusho (also known as Hunza), including 5% (2/38) H-M82(xM36, M97, M39/M138) and 3% (1/38) H-M36.[22]
  • Afghanistan – in 6.1% Pashtun.[14]

Roma people

Haplogroup H-M82 is a major lineage cluster in the Roma, especially Balkan Roma, among whom it accounts for approximately as high as 60% of males.[23] A 2-bp deletion at M82 locus defining this haplogroup was also reported in one-third of males from traditional Roma populations living in Bulgaria, Spain, and Lithuania.[24] High prevalence of Asian-specific Y chromosome haplogroup H-M82 supports their Indian origin and a hypothesis of a small number of founders diverging from a single ethnic group in India (Gresham et al. 2001).

Important studies show a limited introgression of the typical Roma Y-chromosome haplogroup H1 in several European groups, including approximately 0.61% in Gheg Albanians, 2.48% in Tosk Albanians and 0.9% in Serbians.[25]

H1a in Roma populations
Population n/Sample size Percentage Source
Bulgarian Roma 98/248 39.5 [24]
Hungarian Roma 34/107 31.8 [26]
Kosovar Roma 25/42 59.5 [27]
Lithuanian Roma 10/20 50 [24]
Macedonian Roma 34/57 59.6 [23]
Portuguese Roma 21/126 16.7 [28]
Serbian Roma 16/46 34.8 [27]
Slovakian Roma 19/62 30.65 [26]
Spanish Roma 5/27 18.5 [24]

Europe, Caucasus, Central Asia & Middle East

Haplogroup H1a is found at much lower levels outside of the Indian subcontinent and the Romani populations but is still present in other populations:

  • Europe - 0.9% (1/113) H-M82 in a sample of Serbians,[23] 2% (1/57) H-M82 in a sample of Macedonian Greeks,[29] 1% (1/92 H-M82)[29] to 2% (1/50 H-M69)[30] of Ukrainians, H1a2a in 1.3% (1/77) of a sample of Greeks.[16]
  • Caucasus- 2.6% (1/38) H-M82 in a sample of Balkarians,[29]
  • Central Asia - 12.5% (2/16) H-M52 in a sample of Tajiks from Dushanbe,[31] 5.19% (7/135) H-M69 in a sample of Salar from Qinghai,[32] 5.13% (2/39) H (including 1/39 H(xH1,H2) and 1/39 H1) in a sample of Uyghurs from Darya Boyi Village, Yutian (Keriya) County, Xinjiang,[33] 4.65% (6/129) H-M69 in a sample of Mongols from Qinghai,[32] 4.44% (2/45) H-M52 in a sample of Uzbeks from Samarkand,[31] 3.56% (17/478) H-M69 and 0.84% (4/478) F-M89(xG-M201, H-M69, I-M258, J-M304, L-M20, N-M231, O-M175, P-M45, T-M272) in a sample of Uyghurs from the Hotan area, Xinjiang,[32] 2.86% (2/70) H-M52 in a sample of Uzbeks from Khorezm,[31] 2.44% (1/41) H-M52 in a sample of Uyghurs from Kazakhstan,[31] 1.79% (1/56) H-M52 in a sample of Uzbeks from Bukhara,[31] 1.71% (3/175) H-M69 in a sample of Hui from the Changji area, Xinjiang,[32] 1.59% (1/63) H-M52 in a sample of Uzbeks from the Fergana Valley,[31] 1.56% (1/64) H1 in a sample of Uyghurs from Qarchugha Village, Yuli (Lopnur) County, Xinjiang,[33] 1.32% (1/76) H2 in a sample of Uyghurs from Horiqol Township, Awat County, Xinjiang,[33] 0.99% (1/101) H-M69 in a sample of Kazakhs from the Hami area, Xinjiang.[32]
  • West Asia- 6% (1/17) H-M52 in a sample of Turks,[30][31] 5% (1/20) H-M69 in a sample of Syrians,[30] 4% (2/53) H-M52 in a sample of Iranians from Samarkand,[31] 2.6% (3/117) H-M82 in a sample from southern Iran,[34] 4.3% (7/164) of males from the United Arab Emirates,[35] 2% of males from Oman,[36] 1.9% (3/157) of males from Saudi Arabia,[37] 1.4% (1/72 H-M82) of males from Qatar,[35] and 0.6% (3/523) H-M370 in another sample of Turks.[38]

East & South-East Asia

At the easternmost extent of its distribution, Haplogroup H-M69 has been found in Thais from Thailand (1/17 = 5.9% H-M69 Northern Thailand;[39] 2/290 = 0.7% H-M52 Northern Thai;[40] 2/75 = 2.7% H-M69(xM52) and 1/75 = 1.3% H-M52(xM82) general population of Thailand[41]), Balinese (19/551 = 3.45% H-M69),[19] Tibetans (3/156 = 1.9% H-M69(xM52, APT)),[20] Filipinos from southern Luzon (1/55 = 1.8% H-M69(xM52)[41]), Bamars from Myanmar (1/59 = 1.7% H-M82, with the relevant individual having been sampled in Bago Region),[42] Chams from Binh Thuan, Vietnam (1/59 = 1.7% H-M69),[39] and Mongolians (1/149 = 0.7% H-M69).[18] The subclade H-M39/M138 has been observed in the vicinity of Cambodia, including one instance in a sample of six Cambodians[1] and one instance in a sample of 18 individuals from Cambodia and Laos.[22] A genome study about Khmer people resulted in an average amount of 16,5% of Khmer belonging to y-DNA H.[1]

H1b

H1b is defined by the SNPs - B108, Z34961, Z34962, Z34963, and Z34964.[43] Only discovered in 2015, H1b was detected in a single sample from an individual in Myanmar.[44] Due to only being classified recently, there are currently no studies recording H1b in modern populations.

H2

H2 (H-P96), which is defined by seven SNPs – P96, M282, L279, L281, L284, L285, and L286 – is the only primary branch found mainly outside South Asia.[43] Formerly named F3, H2 was reclassified as belonging to haplogroup H due to sharing the marker M3035 with H1.[45] While being found in numerous ancient samples, H2 has only been found scarcely in modern populations across West Eurasia.[2]

H2 in modern populations
Region Population n/Sample size Percentage Source
Central Asia Dolan 1/76 1.3 [46]
West Asia UAE 1/164 0.6 [47]
West Asia South Iran 2/117 1.7 [48]
West Asia Armenia 5/900 0.6 [49]
Southern Europe Sardinia 2/1194 0.2 [50]

H3

H3 (Z5857) like H1, is also mostly centered in South Asia. albeit at much lower frequencies.[44]

Like other branches of H, due to it being newly classified it is not explicitly found in modern population studies. Samples belonging to H3 were likely labeled under F*.[44] In consumer testing, it has been found principally among South Indians and Sri Lankans, and other areas of Asia such as Arabia as well.[6]


The following gives a summary of most of the studies which specifically tested for the subclades H1a1a (H-M82) and H2 (H-P96), formerly F3, showing its distribution in different part of the world.[51]

Continent/subcontinental region Country &/or ethnicity Sample size H1a1a (M82) freq. (%) Source
East/Southeast AsiaCambodia616.67Sengupta et al. 2006
East/Southeast AsiaCambodia/Laos185.56Underhill et al. 2000
South AsiaNepal1884.25Gayden et al. 2007
South AsiaAfghanistan2043.43Haber et al. 2012
South AsiaMalaysian Indians30118.94Pamjav et al. 2011
South AsiaTerai-Nepal19710.66Fornarino et al. 2009
South AsiaHindu New Delhi4910.2Fornarino et al. 2009
South AsiaAndhra Pradesh Tribals2927.6Fornarino et al. 2009
South AsiaChenchu Tribe India4136.6Kivisild et al. 2003
South AsiaKoya Tribe India4170.7Kivisild et al. 2003
South AsiaWest Bengal India319.6Kivisild et al. 2003
South AsiaKonkanastha Brahmin India439.3Kivisild et al. 2003
South AsiaGujarat India2913.8Kivisild et al. 2003
South AsiaLambadi India358.6Kivisild et al. 2003
South AsiaPunjab India664.5Kivisild et al. 2003
South AsiaSinhalese Sri Lanka3910.3Kivisild et al. 2003
South AsiaNorthwest India84214.49Rai et al.2012
South AsiaSouth India184520.05Rai et al.2012
South AsiaCentral India86314.83Rai et al.2012
South AsiaNorth India62213.99Rai et al.2012
South AsiaEast India17068.44Rai et al.2012
South AsiaWest India50117.17Rai et al.2012
South AsiaNortheast India10900.18Rai et al.2012
South AsiaAndaman Island200Thangaraj et al. 2003
Middle East and North AfricaSaudi Arabia1570.64Abu-Amero et al. 2009
Middle East and North AfricaTurkish5230.19Cinnioglu et al. 2004
Middle East and North AfricaIran1502Abu-Amero et al. 2009
Middle East and North AfricaIran9381.2Grugni et al. 2012
gollark: https://tenor.com/view/bees-oprah-honey-not-the-bees-release-the-bees-gif-5375443
gollark: Cauchy's Theorem for a triangle you.
gollark: Yes.
gollark: > Memento mori<@507584570485506059> no.
gollark: Allegedly, yes.

See also

Phylogenetic tree of human Y-chromosome DNA haplogroups [χ 1][χ 2]
"Y-chromosomal Adam"
A00 A0-T [χ 3]
A0 A1 [χ 4]
A1a A1b
A1b1 BT
B CT
DE CF
D E C F
F1  F2  F3  GHIJK
G HIJK
IJK H
IJ K
I   J     LT [χ 5]       K2 [χ 6]
L     T    K2a [χ 7]        K2b [χ 8]     K2c     K2d K2e [χ 9]  
K-M2313 [χ 10]     K2b1 [χ 11] P [χ 12]
NO   S [χ 13]  M [χ 14]    P1     P2
N O Q R

References

  1. Sengupta S, Zhivotovsky LA, King R, Mehdi SQ, Edmonds CA, Chow CE, et al. (February 2006). "Polarity and temporality of high-resolution y-chromosome distributions in India identify both indigenous and exogenous expansions and reveal minor genetic influence of Central Asian pastoralists". American Journal of Human Genetics. 78 (2): 202–21. doi:10.1086/499411. PMC 1380230. PMID 16400607.
  2. Günther T, Valdiosera C, Malmström H, Ureña I, Rodriguez-Varela R, Sverrisdóttir ÓO, et al. (September 2015). "Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques". Proceedings of the National Academy of Sciences of the United States of America. 112 (38): 11917–22. Bibcode:2015PNAS..11211917G. doi:10.1073/pnas.1509851112. PMC 4586848. PMID 26351665.
  3. Haak W, Balanovsky O, Sanchez JJ, Koshel S, Zaporozhchenko V, Adler CJ, et al. (November 2010). "Ancient DNA from European early neolithic farmers reveals their near eastern affinities". PLOS Biology. 8 (11): e1000536. doi:10.1371/journal.pbio.1000536. PMC 2976717. PMID 21085689.
  4. St Clairl M (March 2018). "Haplogroup H-M2713" (PDF). St. Clair Database.
  5. Magoon GR, Banks RH, Rottensteiner C, Schrack BE, Tilroe VO, Robb T, Grierson AJ (2013). "Generation of high-resolution a priori Y-chromosome phylogenies using next-generation sequencing data". bioRxiv 10.1101/000802.
  6. "H YTree". YFull.
  7. Narasimhan VM, Patterson NJ, Moorjani P, Lazaridis I, Mark L, Mallick S, Rohland N, Bernardos R, Kim AM, Nakatsuka N, Olalde I (2018-03-31). "The Genomic Formation of South and Central Asia". bioRxiv 10.1101/292581.
  8. Lazaridis I, Nadel D, Rollefson G, Merrett DC, Rohland N, Mallick S, et al. (August 2016). "Genomic insights into the origin of farming in the ancient Near East". Nature. 536 (7617): 419–24. Bibcode:2016Natur.536..419L. doi:10.1038/nature19310. PMC 5003663. PMID 27459054.
  9. Hofmanová Z, Kreutzer S, Hellenthal G, Sell C, Diekmann Y, Díez-Del-Molino D, et al. (June 2016). "Early farmers from across Europe directly descended from Neolithic Aegeans". Proceedings of the National Academy of Sciences of the United States of America. 113 (25): 6886–91. doi:10.1073/pnas.1523951113. PMC 4922144. PMID 27274049.
  10. Lipson M, Szécsényi-Nagy A, Mallick S, Pósa A, Stégmár B, Keerl V, et al. (November 2017). "Parallel palaeogenomic transects reveal complex genetic history of early European farmers". Nature. 551 (7680): 368–372. Bibcode:2017Natur.551..368L. doi:10.1038/nature24476. PMC 5973800. PMID 29144465.
  11. Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N, Roodenberg SA, Harney E, Stewardson K, Fernandes D, Novak M, Sirak K (2015-10-10). "Eight thousand years of natural selection in Europe". bioRxiv 10.1101/016477.
  12. Mathieson I, Alpaslan-Roodenberg S, Posth C, Szécsényi-Nagy A, Rohland N, Mallick S, Olalde I, Broomandkhoshbacht N, Candilio F, Cheronet O, Fernandes D (2017-05-09). "The Genomic History Of Southeastern Europe". bioRxiv 10.1101/135616.
  13. Olalde Í (2016). From the Mesolithic to the Bronze Age: unraveling 5,000 years of European population history with paleogenomics (PDF) (Ph.D. thesis). Barcelona, Spain: Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra). hdl:10803/403608.
  14. Haber M, Platt DE, Ashrafian Bonab M, Youhanna SC, Soria-Hernanz DF, Martínez-Cruz B, et al. (2012). "Afghanistan's ethnic groups share a Y-chromosomal heritage structured by historical events". PLOS ONE. 7 (3): e34288. Bibcode:2012PLoSO...734288H. doi:10.1371/journal.pone.0034288. PMC 3314501. PMID 22470552.
  15. Sahoo S, Singh A, Himabindu G, Banerjee J, Sitalaximi T, Gaikwad S, et al. (January 2006). "A prehistory of Indian Y chromosomes: evaluating demic diffusion scenarios". Proceedings of the National Academy of Sciences of the United States of America. 103 (4): 843–8. Bibcode:2006PNAS..103..843S. doi:10.1073/pnas.0507714103. PMC 1347984. PMID 16415161.
  16. Firasat S, Khaliq S, Mohyuddin A, Papaioannou M, Tyler-Smith C, Underhill PA, et al. (January 2007). "Y-chromosomal evidence for a limited Greek contribution to the Pathan population of Pakistan". European Journal of Human Genetics. 15 (1): 121–6. doi:10.1038/sj.ejhg.5201726. PMC 2588664. PMID 17047675.
  17. Kivisild T, Rootsi S, Metspalu M, Mastana S, Kaldma K, Parik J, et al. (February 2003). "The genetic heritage of the earliest settlers persists both in Indian tribal and caste populations". American Journal of Human Genetics. 72 (2): 313–32. doi:10.1086/346068. PMC 379225. PMID 12536373.
  18. Hammer MF, Karafet TM, Park H, Omoto K, Harihara S, Stoneking M, Horai S (2006). "Dual origins of the Japanese: common ground for hunter-gatherer and farmer Y chromosomes". Journal of Human Genetics. 51 (1): 47–58. doi:10.1007/s10038-005-0322-0. PMID 16328082.
  19. Karafet TM, Lansing JS, Redd AJ, Reznikova S, Watkins JC, Surata SP, et al. (February 2005). "Balinese Y-chromosome perspective on the peopling of Indonesia: genetic contributions from pre-neolithic hunter-gatherers, Austronesian farmers, and Indian traders". Human Biology. 77 (1): 93–114. doi:10.1353/hub.2005.0030. hdl:1808/13586. PMID 16114819.
  20. Gayden T, Cadenas AM, Regueiro M, Singh NB, Zhivotovsky LA, Underhill PA, et al. (May 2007). "The Himalayas as a directional barrier to gene flow". American Journal of Human Genetics. 80 (5): 884–94. doi:10.1086/516757. PMC 1852741. PMID 17436243.
  21. Fornarino S, Pala M, Battaglia V, Maranta R, Achilli A, Modiano G, et al. (July 2009). "Mitochondrial and Y-chromosome diversity of the Tharus (Nepal): a reservoir of genetic variation". BMC Evolutionary Biology. 9: 154. doi:10.1186/1471-2148-9-154. PMC 2720951. PMID 19573232.
  22. Underhill PA, Shen P, Lin AA, Jin L, Passarino G, Yang WH, et al. (November 2000). "Y chromosome sequence variation and the history of human populations". Nature Genetics. 26 (3): 358–61. doi:10.1038/81685. PMID 11062480.
  23. Pericić M, Lauc LB, Klarić IM, Rootsi S, Janićijevic B, Rudan I, et al. (October 2005). "High-resolution phylogenetic analysis of southeastern Europe traces major episodes of paternal gene flow among Slavic populations". Molecular Biology and Evolution. 22 (10): 1964–75. doi:10.1093/molbev/msi185. PMID 15944443.
  24. Gresham D, Morar B, Underhill PA, Passarino G, Lin AA, Wise C, Angelicheva D, Calafell F, Oefner PJ, Shen P, Tournev I, de Pablo R, Kuĉinskas V, Perez-Lezaun A, Marushiakova E, Popov V, Kalaydjieva L (December 2001). "Origins and divergence of the Roma (gypsies)". American Journal of Human Genetics. 69 (6): 1314–31. doi:10.1086/324681. PMC 1235543. PMID 11704928.
  25. Ferri G, Tofanelli S, Alù M, Taglioli L, Radheshi E, Corradini B, et al. (September 2010). "Y-STR variation in Albanian populations: implications on the match probabilities and the genetic legacy of the minority claiming an Egyptian descent". International Journal of Legal Medicine. 124 (5): 363–70. doi:10.1007/s00414-010-0432-x. PMID 20238122.
  26. Pamjav H, Zalán A, Béres J, Nagy M, Chang YM (May 2011). "Genetic structure of the paternal lineage of the Roma people". American Journal of Physical Anthropology. 145 (1): 21–9. doi:10.1002/ajpa.21454. PMID 21484758.
  27. Regueiro M, Stanojevic A, Chennakrishnaiah S, Rivera L, Varljen T, Alempijevic D, Stojkovic O, Simms T, Gayden T, Herrera RJ (January 2011). "Divergent patrilineal signals in three Roma populations". American Journal of Physical Anthropology. 144 (1): 80–91. doi:10.1002/ajpa.21372. PMID 20878647.
  28. Gusmão A, Gusmão L, Gomes V, Alves C, Calafell F, Amorim A, Prata MJ (March 2008). "A perspective on the history of the Iberian gypsies provided by phylogeographic analysis of Y-chromosome lineages". Annals of Human Genetics. 72 (Pt 2): 215–27. doi:10.1111/j.1469-1809.2007.00421.x. PMID 18205888.
  29. Battaglia V, Fornarino S, Al-Zahery N, Olivieri A, Pala M, Myres NM, et al. (June 2009). "Y-chromosomal evidence of the cultural diffusion of agriculture in Southeast Europe". European Journal of Human Genetics. 17 (6): 820–30. doi:10.1038/ejhg.2008.249. PMC 2947100. PMID 19107149.
  30. Semino O, Passarino G, Oefner PJ, Lin AA, Arbuzova S, Beckman LE, et al. (November 2000). "The genetic legacy of Paleolithic Homo sapiens sapiens in extant Europeans: a Y chromosome perspective". Science. 290 (5494): 1155–9. Bibcode:2000Sci...290.1155S. doi:10.1126/science.290.5494.1155. PMID 11073453.
  31. Wells RS, Yuldasheva N, Ruzibakiev R, Underhill PA, Evseeva I, Blue-Smith J, et al. (August 2001). "The Eurasian heartland: a continental perspective on Y-chromosome diversity". Proceedings of the National Academy of Sciences of the United States of America. 98 (18): 10244–9. Bibcode:2001PNAS...9810244W. doi:10.1073/pnas.171305098. PMC 56946. PMID 11526236.
  32. Lu Yan (2011), "Genetic Mixture of Populations in Western China." Shanghai: Fudan University, 2011: 1-84. (Doctoral dissertation in Chinese: 陆艳, “中国西部人群的遗传混合”, 上海:复旦大学,2011: 1-84.)
  33. Regueiro M, Cadenas AM, Gayden T, Underhill PA, Herrera RJ (2006). "Iran: tricontinental nexus for Y-chromosome driven migration". Human Heredity. 61 (3): 132–43. doi:10.1159/000093774. PMID 16770078.
  34. Cadenas AM, Zhivotovsky LA, Cavalli-Sforza LL, Underhill PA, Herrera RJ (March 2008). "Y-chromosome diversity characterizes the Gulf of Oman". European Journal of Human Genetics. 16 (3): 374–86. doi:10.1038/sj.ejhg.5201934. PMID 17928816.
  35. Luis JR, Rowold DJ, Regueiro M, Caeiro B, Cinnioğlu C, Roseman C, et al. (March 2004). "The Levant versus the Horn of Africa: evidence for bidirectional corridors of human migrations". American Journal of Human Genetics. 74 (3): 532–44. doi:10.1086/382286. PMC 1182266. PMID 14973781.
  36. Abu-Amero KK, Hellani A, González AM, Larruga JM, Cabrera VM, Underhill PA (September 2009). "Saudi Arabian Y-Chromosome diversity and its relationship with nearby regions". BMC Genetics. 10: 59. doi:10.1186/1471-2156-10-59. PMC 2759955. PMID 19772609.
  37. Cinnioğlu C, King R, Kivisild T, Kalfoğlu E, Atasoy S, Cavalleri GL, et al. (January 2004). "Excavating Y-chromosome haplotype strata in Anatolia". Human Genetics. 114 (2): 127–48. doi:10.1007/s00439-003-1031-4. PMID 14586639.
  38. He JD, Peng MS, Quang HH, Dang KP, Trieu AV, Wu SF, et al. (2012). "Patrilineal perspective on the Austronesian diffusion in Mainland Southeast Asia". PLOS ONE. 7 (5): e36437. Bibcode:2012PLoSO...736437H. doi:10.1371/journal.pone.0036437. PMC 3346718. PMID 22586471.
  39. Brunelli A, Kampuansai J, Seielstad M, Lomthaisong K, Kangwanpong D, Ghirotto S, Kutanan W (2017). "Y chromosomal evidence on the origin of northern Thai people". PLOS ONE. 12 (7): e0181935. Bibcode:2017PLoSO..1281935B. doi:10.1371/journal.pone.0181935. PMC 5524406. PMID 28742125.
  40. Trejaut JA, Poloni ES, Yen JC, Lai YH, Loo JH, Lee CL, He CL, Lin M (June 2014). "Taiwan Y-chromosomal DNA variation and its relationship with Island Southeast Asia". BMC Genetics. 15: 77. doi:10.1186/1471-2156-15-77. PMC 4083334. PMID 24965575.
  41. Peng MS, He JD, Fan L, Liu J, Adeola AC, Wu SF, et al. (August 2014). "Retrieving Y chromosomal haplogroup trees using GWAS data". European Journal of Human Genetics. 22 (8): 1046–50. doi:10.1038/ejhg.2013.272. PMC 4350590. PMID 24281365.
  42. International Society of Genetic Genealogy (25 May 2016). "Y-DNA Haplogroup Tree 2016 Version: 11.144".
  43. Karmin M, Saag L, Vicente M, Wilson Sayres MA, Järve M, Talas UG, et al. (April 2015). "A recent bottleneck of Y chromosome diversity coincides with a global change in culture". Genome Research. 25 (4): 459–66. doi:10.1101/gr.186684.114. PMC 4381518. PMID 25770088."Supplementary Information" (PDF).
  44. van Oven M, Van Geystelen A, Kayser M, Decorte R, Larmuseau MH (February 2014). "Seeing the wood for the trees: a minimal reference phylogeny for the human Y chromosome". Human Mutation. 35 (2): 187–91. doi:10.1002/humu.22468. PMID 24166809.
  45. Liu S, Nizam Y, Rabiyamu B, Abdukeram B, Dolkun M (2018). "A study of genetic diversity of three isolated populations in Xinjiang using Y-SNP". Acta Anthropologica Sinica.
  46. Cadenas A (2006-11-08). Y-chromosome polymorphisms in southern Arabia. FIU Electronic Theses and Dissertations (Master of Science (MS) thesis). Florida International University. doi:10.25148/etd.FI14052526.
  47. Regueiro M, Cadenas AM, Gayden T, Underhill PA, Herrera RJ (2006). "Iran: tricontinental nexus for Y-chromosome driven migration". Human Heredity. 61 (3): 132–43. doi:10.1159/000093774. PMID 16770078.
  48. "Armenian DNA Project". FamilyTreeDNA. Gene by Gene, Ltd.
  49. Francalacci P, Morelli L, Angius A, Berutti R, Reinier F, Atzeni R, et al. (August 2013). "Low-pass DNA sequencing of 1200 Sardinians reconstructs European Y-chromosome phylogeny". Science. 341 (6145): 565–9. Bibcode:2013Sci...341..565F. doi:10.1126/science.1237947. PMC 5500864. PMID 23908240.
  50. Rai N, Chaubey G, Tamang R, Pathak AK, Singh VK, Karmin M, et al. (2012). "The phylogeography of Y-chromosome haplogroup h1a1a-m82 reveals the likely Indian origin of the European Romani populations". PLOS ONE. 7 (11): e48477. Bibcode:2012PLoSO...748477R. doi:10.1371/journal.pone.0048477. PMC 3509117. PMID 23209554.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.