6-demicube

In geometry, a 6-demicube or demihexteract is a uniform 6-polytope, constructed from a 6-cube (hexeract) with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.

Demihexeract
(6-demicube)

Petrie polygon projection
Type Uniform 6-polytope
Family demihypercube
Schläfli symbol {3,33,1} = h{4,34}
s{21,1,1,1,1}
Coxeter diagrams =
=





Coxeter symbol 131
5-faces4412 {31,2,1}
32 {34}
4-faces25260 {31,1,1}
192 {33}
Cells640160 {31,0,1}
480 {3,3}
Faces640{3}
Edges240
Vertices32
Vertex figure Rectified 5-simplex
Symmetry group D6, [33,1,1] = [1+,4,34]
[25]+
Petrie polygon decagon
Properties convex

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM6 for a 6-dimensional half measure polytope.

Coxeter named this polytope as 131 from its Coxeter diagram, with a ring on one of the 1-length branches, . It can named similarly by a 3-dimensional exponential Schläfli symbol or {3,33,1}.

Cartesian coordinates

Cartesian coordinates for the vertices of a demihexeract centered at the origin are alternate halves of the hexeract:

(±1,±1,±1,±1,±1,±1)

with an odd number of plus signs.

As a configuration

This configuration matrix represents the 6-demicube. The rows and columns correspond to vertices, edges, faces, cells, 4-faces and 5-faces. The diagonal numbers say how many of each element occur in the whole 6-demicube. The nondiagonal numbers say how many of the column's element occur in or at the row's element.[1][2]

The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time.[3]

D6k-facefkf0f1f2f3f4f5k-figurenotes
A4( ) f0 3215602060153066r{3,3,3,3}D6/A4 = 32*6!/5! = 32
A3A1A1{ } f1 224084126842{}x{3,3}D6/A3A1A1 = 32*6!/4!/2/2 = 240
A3A2{3} f2 33640133331{3}v( )D6/A3A2 = 32*6!/4!/3! = 640
A3A1h{4,3} f3 464160*3030{3}D6/A3A1 = 32*6!/4!/2 = 160
A3A2{3,3} 464*4801221{}v( )D6/A3A2 = 32*6!/4!/3! = 480
D4A1h{4,3,3} f4 824328860*20{ }D6/D4A1 = 32*6!/8/4!/2 = 60
A4{3,3,3} 5101005*19211D6/A4 = 32*6!/5! = 192
D5h{4,3,3,3} f5 16801604080101612*( )D6/D5 = 32*6!/16/5! = 12
A5{3,3,3,3} 6152001506*32D6/A5 = 32*6!/6! = 32

Images

orthographic projections
Coxeter plane B6
Graph
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

There are 47 uniform polytopes with D6 symmetry, 31 are shared by the B6 symmetry, and 16 are unique:

The 6-demicube, 131 is third in a dimensional series of uniform polytopes, expressed by Coxeter as k31 series. The fifth figure is a Euclidean honeycomb, 331, and the final is a noncompact hyperbolic honeycomb, 431. Each progressive uniform polytope is constructed from the previous as its vertex figure.

k31 dimensional figures
n 4 5 6 7 8 9
Coxeter
group
A3A1 A5 D6 E7 = E7+ =E7++
Coxeter
diagram
Symmetry [3−1,3,1] [30,3,1] [31,3,1] [32,3,1] [33,3,1] [34,3,1]
Order 48 720 23,040 2,903,040
Graph - -
Name 131 031 131 231 331 431

It is also the second in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. The next figure is the Euclidean honeycomb 133 and the final is a noncompact hyperbolic honeycomb, 134.

13k dimensional figures
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8 9
Coxeter
group
A3A1 A5 D6 E7 =E7+ =E7++
Coxeter
diagram
Symmetry [3−1,3,1] [30,3,1] [31,3,1] [32,3,1] [[3<sup>3,3,1</sup>]] [34,3,1]
Order 48 720 23,040 2,903,040
Graph - -
Name 13,-1 130 131 132 133 134

Skew icosahedron

Coxeter identified a subset of 12 vertices that form a regular skew icosahedron {3, 5} with the same symmetries as the icosahedron itself, but at different angles. He dubbed this the regular skew icosahedron.[4][5]

gollark: What if we make a (meta-)*esolang?
gollark: What if we make an esolang generator?
gollark: Did you know that you can easily just define your language as Turing complete and leave it to the implementors to work it out?
gollark: New esolang: it has one command, α, which is Turing-complete.
gollark: If it stops expanding, I think we would just end up with the same boring heat death "uniform distribution of matter" thing but denser.

References

  1. Coxeter, Regular Polytopes, sec 1.8 Configurations
  2. Coxeter, Complex Regular Polytopes, p.117
  3. Klitzing, Richard. "x3o3o *b3o3o3o - hax".
  4. Coxeter, H. S. M. The beauty of geometry : twelve essays (Dover ed.). Dover Publications. pp. 450–451. ISBN 9780486409191.
  5. Deza, Michael; Shtogrin, Mikhael (2000). "Embedding the graphs of regular tilings and star-honeycombs into the graphs of hypercubes and cubic lattices". Advanced Studies in Pure Mathematics: 77. doi:10.2969/aspm/02710073. Retrieved 4 April 2020.
  • H.S.M. Coxeter:
    • Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26. pp. 409: Hemicubes: 1n1)
  • Klitzing, Richard. "6D uniform polytopes (polypeta) x3o3o *b3o3o3o – hax".
Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.