6-cube

In geometry, a 6-cube is a six-dimensional hypercube with 64 vertices, 192 edges, 240 square faces, 160 cubic cells, 60 tesseract 4-faces, and 12 5-cube 5-faces.

6-cube
Hexeract

Orthogonal projection
inside Petrie polygon
Orange vertices are doubled, and the center yellow has 4 vertices
TypeRegular 6-polytope
Familyhypercube
Schläfli symbol{4,34}
Coxeter diagram
5-faces12 {4,3,3,3}
4-faces60 {4,3,3}
Cells160 {4,3}
Faces240 {4}
Edges192
Vertices64
Vertex figure5-simplex
Petrie polygondodecagon
Coxeter groupB6, [34,4]
Dual6-orthoplex
Propertiesconvex

It has Schläfli symbol {4,34}, being composed of 3 5-cubes around each 4-face. It can be called a hexeract, a portmanteau of tesseract (the 4-cube) with hex for six (dimensions) in Greek. It can also be called a regular dodeca-6-tope or dodecapeton, being a 6-dimensional polytope constructed from 12 regular facets.

It is a part of an infinite family of polytopes, called hypercubes. The dual of a 6-cube can be called a 6-orthoplex, and is a part of the infinite family of cross-polytopes.

Applying an alternation operation, deleting alternating vertices of the 6-cube, creates another uniform polytope, called a 6-demicube, (part of an infinite family called demihypercubes), which has 12 5-demicube and 32 5-simplex facets.

As a configuration

This configuration matrix represents the 6-cube. The rows and columns correspond to vertices, edges, faces, cells, 4-faces and 5-faces. The diagonal numbers say how many of each element occur in the whole 6-cube. The nondiagonal numbers say how many of the column's element occur in or at the row's element.[1][2]

Cartesian coordinates

Cartesian coordinates for the vertices of a 6-cube centered at the origin and edge length 2 are

(±1,±1,±1,±1,±1,±1)

while the interior of the same consists of all points (x0, x1, x2, x3, x4, x5) with −1 < xi < 1.

Construction

There are three Coxeter groups associated with the 6-cube, one regular, with the C6 or [4,3,3,3,3] Coxeter group, and a half symmetry (D6) or [33,1,1] Coxeter group. The lowest symmetry construction is based on hyperrectangles or proprisms, cartesian products of lower dimensional hypercubes.

Name Coxeter Schläfli Symmetry Order
Regular 6-cube
{4,3,3,3,3} [4,3,3,3,3]46080
Quasiregular 6-cube [3,3,3,31,1]23040
hyperrectangle {4,3,3,3}×{}[4,3,3,3,2]7680
{4,3,3}×{4}[4,3,3,2,4]3072
{4,3}2[4,3,2,4,3]2304
{4,3,3}×{}2[4,3,3,2,2]1536
{4,3}×{4}×{}[4,3,2,4,2]768
{4}3[4,2,4,2,4]512
{4,3}×{}3[4,3,2,2,2]384
{4}2×{}2[4,2,4,2,2]256
{4}×{}4[4,2,2,2,2]128
{}6 [2,2,2,2,2]64

Projections

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane Other B3 B2
Graph
Dihedral symmetry [2] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]
3D Projections

6-cube 6D simple rotation through 2Pi with 6D perspective projection to 3D.

6-cube quasicrystal structure orthographically projected
to 3D using the golden ratio.

This polytope is one of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.

gollark: It, er, sounds like you stir up conflict somehow then?
gollark: > They'll make it as good as all the software they makeThis is Google. They will randomly kill it, or make another application doing nearly the same thing but lacking some critical feature and make everyone switch, while mining your data.
gollark: Greetings, mortal.
gollark: Apparently having music functions is very trendy in Discord bots, so I just have six of them streaming random YouTube videos into my brain.
gollark: Also bad.

References

  1. Coxeter, Regular Polytopes, sec 1.8 Configurations
  2. Coxeter, Complex Regular Polytopes, p.117
  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n>=5)
  • Klitzing, Richard. "6D uniform polytopes (polypeta) o3o3o3o3o4x - ax".
Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.