Coxeter notation
In geometry, Coxeter notation (also Coxeter symbol) is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, with modifiers to indicate certain subgroups. The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson.
C1v |
C2v |
C3v |
C4v |
C5v |
C6v |
---|---|---|---|---|---|
Order 2 |
Order 4 |
Order 6 |
Order 8 |
Order 10 |
Order 12 |
[2]=[2,1] D1h |
[2,2] D2h |
[2,3] D3h |
[2,4] D4h |
[2,5] D5h |
[2,6] D6h |
Order 4 |
Order 8 |
Order 12 |
Order 16 |
Order 20 |
Order 24 |
Order 24 |
Order 48 |
Order 120 | |||
Coxeter notation expresses Coxeter groups as a list of branch orders of a Coxeter diagram, like the polyhedral groups, |
Reflectional groups
For Coxeter groups, defined by pure reflections, there is a direct correspondence between the bracket notation and Coxeter-Dynkin diagram. The numbers in the bracket notation represent the mirror reflection orders in the branches of the Coxeter diagram. It uses the same simplification, suppressing 2s between orthogonal mirrors.
The Coxeter notation is simplified with exponents to represent the number of branches in a row for linear diagram. So the An group is represented by [3n-1], to imply n nodes connected by n-1 order-3 branches. Example A2 = [3,3] = [32] or [31,1] represents diagrams
Coxeter initially represented bifurcating diagrams with vertical positioning of numbers, but later abbreviated with an exponent notation, like [...,3p,q] or [3p,q,r], starting with [31,1,1] or [3,31,1] =
Coxeter groups formed by cyclic diagrams are represented by parentheseses inside of brackets, like [(p,q,r)] =
More complicated looping diagrams can also be expressed with care. The paracompact Coxeter group
The Coxeter diagram usually leaves order-2 branches undrawn, but the bracket notation includes an explicit 2 to connect the subgraphs. So the Coxeter diagram
|
|
|
For the affine and hyperbolic groups, the subscript is one less than the number of nodes in each case, since each of these groups was obtained by adding a node to a finite group's diagram.
Subgroups
Coxeter's notation represents rotational/translational symmetry by adding a + superscript operator outside the brackets, [X]+ which cuts the order of the group [X] in half, thus an index 2 subgroup. This operator implies an even number of operators must be applied, replacing reflections with rotations (or translations). When applied to a Coxeter group, this is called a direct subgroup because what remains are only direct isometries without reflective symmetry.
The + operators can also be applied inside of the brackets, like [X,Y+] or [X,(Y,Z)+], and creates "semidirect" subgroups that may include both reflective and nonreflective generators. Semidirect subgroups can only apply to Coxeter group subgroups that have even order branches adjacent to it. Elements by parentheses inside of a Coxeter group can be give a + superscript operator, having the effect of dividing adjacent ordered branches into half order, thus is usually only applied with even numbers. For example, [4,3+] and [4,(3,3)+] (
If applied with adjacent odd branch, it doesn't create a subgroup of index 2, but instead creates overlapping fundamental domains, like [5,1+] = [5/2], which can define doubly wrapped polygons like a pentagram, {5/2}, and [5,3+] relates to Schwarz triangle [5/2,3], density 2.
Group | Order | Generators | Subgroup | Order | Generators | Notes | ||
---|---|---|---|---|---|---|---|---|
[p] | 2p | {0,1} | [p]+ | p | {01} | Direct subgroup | ||
[2p+] = [2p]+ | 2p | {01} | [2p+]+ = [2p]+2 = [p]+ | p | {0101} | |||
[2p] | 4p | {0,1} | [1+,2p] = [p] | 2p | {101,1} | Half subgroups | ||
[2p,1+] = [p] | {0,010} | |||||||
[1+,2p,1+] = [2p]+2 = [p]+ | p | {0101} | Quarter group |
Groups without neighboring + elements can be seen in ringed nodes Coxeter-Dynkin diagram for uniform polytopes and honeycomb are related to hole nodes around the + elements, empty circles with the alternated nodes removed. So the snub cube,
Note: Pyritohedral symmetry
Halving subgroups and extended groups
[1,4,1] = [4] |
[1+,4,1]=[2]=[ ]×[ ] | |
[1,4,1+]=[2]=[ ]×[ ] |
[1+,4,1+] = [2]+ |
Johnson extends the + operator to work with a placeholder 1+ nodes, which removes mirrors, doubling the size of the fundamental domain and cuts the group order in half.[1] In general this operation only applies to individual mirrors bounded by even-order branches. The 1 represents a mirror so [2p] can be seen as [2p,1], [1,2p], or [1,2p,1], like diagram
Each of these mirrors can be removed so h[2p] = [1+,2p,1] = [1,2p,1+] = [p], a reflective subgroup index 2. This can be shown in a Coxeter diagram by adding a + symbol above the node:
If both mirrors are removed, a quarter subgroup is generated, with the branch order becoming a gyration point of half the order:
- q[2p] = [1+,2p,1+] = [p]+, a rotational subgroup of index 4.
= = = = .
For example, (with p=2): [4,1+] = [1+,4] = [2] = [ ]×[ ], order 4. [1+,4,1+] = [2]+, order 2.
The opposite to halving is doubling[2] which adds a mirror, bisecting a fundamental domain, and doubling the group order.
- [[p]] = [2p]
Halving operations apply for higher rank groups, like tetrahedral symmetry is a half group of octahedral group: h[4,3] = [1+,4,3] = [3,3], removing half the mirrors at the 4-branch. The effect of a mirror removal is to duplicate all connecting nodes, which can be seen in the Coxeter diagrams:
If nodes are indexed, half subgroups can be labeled with new mirrors as composites. Like
Doubling by adding a mirror also applies in reversing the halving operation: [[3,3]] = [4,3], or more generally [[(q,q,p)]] = [2p,q].
Tetrahedral symmetry | Octahedral symmetry |
---|---|
Td, [3,3] = [1+,4,3] (Order 24) |
Oh, [4,3] = [[3,3]] (Order 48) |
Radical subgroups
Johnson also added an asterisk or star * operator for "radical" subgroups,[3] that acts similar to the + operator, but removes rotational symmetry. The index of the radical subgroup is the order of the removed element. For example, [4,3*] ≅ [2,2]. The removed [3] subgroup is order 6 so [2,2] is an index 6 subgroup of [4,3].
The radical subgroups represent the inverse operation to an extended symmetry operation. For example, [4,3*] ≅ [2,2], and in reverse [2,2] can be extended as [3[2,2]] ≅ [4,3]. The subgroups can be expressed as a Coxeter diagram:
If [4,3] has generators {0,1,2}, [4,3+], index 2, has generators {0,12}; [1+,4,3] ≅ [3,3], index 2 has generators {010,1,2}; while radical subgroup [4,3*] ≅ [2,2], index 6, has generators {01210, 2, (012)3}; and finally [1+,4,3*], index 12 has generators {0(12)20, (012)201}.
Trionic subgroups
A trionic subgroup is an index 3 subgroups. There are many
Johnson defines a trionic subgroup with operator ⅄, index 3. For rank 2 Coxeter groups, [3], the trionic subgroup, [3⅄] is [ ], a single mirror. And for [3p], the trionic subgroup is [3p]⅄ ≅ [p]. Given
Trionic subgroups of tetrahedral symmetry: [3,3]⅄ ≅ [2+,4], relating the symmetry of the regular tetrahedron and tetragonal disphenoid.
For rank 3 Coxeter groups, [p,3], there is a trionic subgroup [p,3⅄] ≅ [p/2,p], or
An odd-order adjacent branch, p, will not lower the group order, but create overlapping fundamental domains. The group order stays the same, while the density increases. For example, the icosahedral symmetry, [5,3], of the regular polyhedra icosahedron becomes [5/2,5], the symmetry of 2 regular star polyhedra. It also relates the hyperbolic tilings {p,3}, and star hyperbolic tilings {p/2,p}
For rank 4, [q,2p,3⅄] = [2p,((p,q,q))],
For example, [3,4,3⅄] = [4,3,3], or
Trionic subgroups of tetrahedral symmetry
Johnson identified two specific trionic subgroups[4] of [3,3], first an index 3 subgroup [3,3]⅄ ≅ [2+,4], with [3,3] (
Secondly he identifies a related index 6 subgroup [3,3]Δ or [(3,3,2⅄)]+ (
These subgroups also apply within larger Coxeter groups with [3,3] subgroup with neighboring branches all even order.
For example, [(3,3)+,4], [(3,3)⅄,4], and [(3,3)Δ,4] are subgroups of [3,3,4], index 2, 3 and 6 respectively. The generators of [(3,3)⅄,4] ≅ [[4,2,4]] ≅ [8,2+,8], order 128, are {02,1,3} from [3,3,4] generators {0,1,2,3}. And [(3,3)Δ,4] ≅ [[4,2<sup>+</sup>,4]], order 64, has generators {02,1021,3}. As well, [3⅄,4,3⅄] ≅ [(3,3)⅄,4].
Also related [31,1,1] = [3,3,4,1+] has trionic subgroups: [31,1,1]⅄ = [(3,3)⅄,4,1+], order 64, and 1=[31,1,1]Δ = [(3,3)Δ,4,1+] ≅ [[4,2<sup>+</sup>,4]]+, order 32.
Central inversion
A central inversion, order 2, is operationally differently by dimension. The group [ ]n = [2n-1] represents n orthogonal mirrors in n-dimensional space, or an n-flat subspace of a higher dimensional space. The mirrors of the group [2n-1] are numbered . The order of the mirrors doesn't matter in the case of an inversion. The matrix of a central inversion is , the Identity matrix with negative one on the diagonal.
From that basis, the central inversion has a generator as the product of all the orthogonal mirrors. In Coxeter notation this inversion group is expressed by adding an alternation + to each 2 branch. The alternation symmetry is marked on Coxeter diagram nodes as open nodes.
A Coxeter-Dynkin diagram can be marked up with explicit 2 branches defining a linear sequence of mirrors, open-nodes, and shared double-open nodes to show the chaining of the reflection generators.
For example, [2+,2] and [2,2+] are subgroups index 2 of [2,2],
Dimension | Coxeter notation | Order | Coxeter diagram | Operation | Generator |
---|---|---|---|---|---|
2 | [2]+ | 2 | 180° rotation, C2 | {01} | |
3 | [2+,2+] | 2 | rotoreflection, Ci or S2 | {012} | |
4 | [2+,2+,2+] | 2 | double rotation | {0123} | |
5 | [2+,2+,2+,2+] | 2 | double rotary reflection | {01234} | |
6 | [2+,2+,2+,2+,2+] | 2 | triple rotation | {012345} | |
7 | [2+,2+,2+,2+,2+,2+] | 2 | triple rotary reflection | {0123456} |
Rotations and rotary reflections
Rotations and rotary reflections are constructed by a single single-generator product of all the reflections of a prismatic group, [2p]×[2q]×... where gcd(p,q,...)=1, they are isomorphic to the abstract cyclic group Zn, of order n=2pq.
The 4-dimensional double rotations, [2p+,2+,2q+] (with gcd(p,q)=1), which include a central group, and are expressed by Conway as ±[Cp×Cq],[5] order 2pq. From Coxeter diagram
If there is a common factor f, the double rotation can be written as 1⁄f[2pf+,2+,2qf+] (with gcd(p,q)=1), generator {0123}, order 2pqf. For example, p=q=1, f=2, 1⁄2[4+,2+,4+] is order 4. And 1⁄f[2pf+,2+,2qf+]+, generator {01230123}, is order pqf. For example, 1⁄2[4+,2+,4+]+ is order 2, a central inversion.
Dimension | Coxeter notation | Order | Coxeter diagram | Operation | Generator | Direct subgroup | |
---|---|---|---|---|---|---|---|
2 | [2p]+ | 2p | Rotation | {01} | [2p]+2 | Simple rotation: [2p]+2 = [p]+ order p | |
3 | [2p+,2+] | rotary reflection | {012} | [2p+,2+]+ | |||
4 | [2p+,2+,2+] | double rotation | {0123} | [2p+,2+,2+]+ | |||
5 | [2p+,2+,2+,2+] | double rotary reflection | {01234} | [2p+,2+,2+,2+]+ | |||
6 | [2p+,2+,2+,2+,2+] | triple rotation | {012345} | [2p+,2+,2+,2+,2+]+ | |||
7 | [2p+,2+,2+,2+,2+,2+] | triple rotary reflection | {0123456} | [2p+,2+,2+,2+,2+,2+]+ | |||
4 | [2p+,2+,2q+] | 2pq | double rotation | {0123} | [2p+,2+,2q+]+ | Double rotation: [2p+,2+,2q+]+ order pq gcd(p,q)=1 | |
5 | [2p+,2+,2q+,2+] | double rotary reflection | {01234} | [2p+,2+,2q+,2+]+ | |||
6 | [2p+,2+,2q+,2+,2+] | triple rotation | {012345} | [2p+,2+,2q+,2+,2+] | |||
7 | [2p+,2+,2q+,2+,2+,2+] | triple rotary reflection | {0123456} | [2p+,2+,2q+,2+,2+,2+]+ | |||
6 | [2p+,2+,2q+,2+,2r+] | 2pqr | triple rotation | {012345} | [2p+,2+,2q+,2+,2r+]+ | Triple rotation: [2p+,2+,2q+,2+,2r+]+ order pqr gcd(p,q,r)=1 | |
7 | [2p+,2+,2q+,2+,2r+,2+] | triple rotary reflection | {0123456} | [2p+,2+,2q+,2+,2r+,2+]+ |
Commutator subgroups
Simple groups with only odd-order branch elements have only a single rotational/translational subgroup of order 2, which is also the commutator subgroup, examples [3,3]+, [3,5]+, [3,3,3]+, [3,3,5]+. For other Coxeter groups with even-order branches, the commutator subgroup has index 2c, where c is the number of disconnected subgraphs when all the even-order branches are removed.[6] For example, [4,4] has three independent nodes in the Coxeter diagram when the 4s are removed, so its commutator subgroup is index 23, and can have different representations, all with three + operators: [4+,4+]+, [1+,4,1+,4,1+], [1+,4,4,1+]+, or [(4+,4+,2+)]. A general notation can be used with +c as a group exponent, like [4,4]+3.
Example subgroups
Rank 2 example subgroups
Dihedral symmetry groups with even-orders have a number of subgroups. This example shows two generator mirrors of [4] in red and green, and looks at all subgroups by halfing, rank-reduction, and their direct subgroups. The group [4],
Subgroups of [4] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Index | 1 | 2 (half) | 4 (Rank-reduction) | ||||||||
Diagram | |||||||||||
Coxeter |
[1,4,1] = [4] |
[1+,4,1] = [1+,4] = [2] |
[1,4,1+] = [4,1+] = [2] |
[1] = [ ] |
[1] = [ ] | ||||||
Generators | {0,1} | {101,1} | {0,010} | {0} | {1} | ||||||
Direct subgroups | |||||||||||
Index | 2 | 4 | 8 | ||||||||
Diagram | |||||||||||
Coxeter | [4]+ |
[4]+2 = [1+,4,1+] = [2]+ |
[ ]+ | ||||||||
Generators | {01} | {(01)2} | {02} = {12} = {(01)4} = { } |
Rank 3 Euclidean example subgroups
The [4,4] group has 15 small index subgroups. This table shows them all, with a yellow fundamental domain for pure reflective groups, and alternating white and blue domains which are paired up to make rotational domains. Cyan, red, and green mirror lines correspond to the same colored nodes in the Coxeter diagram. Subgroup generators can be expressed as products of the original 3 mirrors of the fundamental domain, {0,1,2}, corresponding to the 3 nodes of the Coxeter diagram,
Small index subgroups of [4,4] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Index | 1 | 2 | 4 | ||||||||
Diagram | |||||||||||
Coxeter |
[1,4,1,4,1] = [4,4] |
[1+,4,4] |
[4,4,1+] |
[4,1+,4] |
[1+,4,4,1+] |
[4+,4+] | |||||
Generators | {0,1,2} | {010,1,2} | {0,1,212} | {0,101,121,2} | {010,1,212,20102} | {(01)2,(12)2,012,120} | |||||
Orbifold | *442 | *2222 | 22× | ||||||||
Semidirect subgroups | |||||||||||
Index | 2 | 4 | |||||||||
Diagram | |||||||||||
Coxeter | [4,4+] |
[4+,4] |
[(4,4,2+)] |
[4,1+,4,1+] |
[1+,4,1+,4] | ||||||
Generators | {0,12} | {01,2} | {02,1,212} | {0,101,(12)2} | {(01)2,121,2} | ||||||
Orbifold | 4*2 | 2*22 | |||||||||
Direct subgroups | |||||||||||
Index | 2 | 4 | 8 | ||||||||
Diagram | |||||||||||
Coxeter | [4,4]+ |
[4,4+]+ |
[4+,4]+ |
[(4,4,2+)]+ |
[4,4]+3 = [(4+,4+,2+)] = [1+,4,1+,4,1+] = [4+,4+]+ | ||||||
Generators | {01,12} | {(01)2,12} | {01,(12)2} | {02,(01)2,(12)2} | {(01)2,(12)2,2(01)22} | ||||||
Orbifold | 442 | 2222 | |||||||||
Radical subgroups | |||||||||||
Index | 8 | 16 | |||||||||
Diagram | |||||||||||
Coxeter | [4,4*] |
[4*,4] |
[4,4*]+ |
[4*,4]+ | |||||||
Orbifold | *2222 | 2222 |
Hyperbolic example subgroups
The same set of 15 small subgroups exists on all triangle groups with even order elements, like [6,4] in the hyperbolic plane:
Small index subgroups of [6,4] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Index | 1 | 2 | 4 | ||||||||
Diagram | |||||||||||
Coxeter |
[1,6,1,4,1] = [6,4] |
[1+,6,4] |
[6,4,1+] |
[6,1+,4] |
[1+,6,4,1+] |
[6+,4+] | |||||
Generators | {0,1,2} | {010,1,2} | {0,1,212} | {0,101,121,2} | {010,1,212,20102} | {(01)2,(12)2,012} | |||||
Orbifold | *642 | *443 | *662 | *3222 | *3232 | 32× | |||||
Semidirect subgroups | |||||||||||
Diagram | |||||||||||
Coxeter | [6,4+] |
[6+,4] |
[(6,4,2+)] |
[6,1+,4,1+] = |
[1+,6,1+,4] = | ||||||
Generators | {0,12} | {01,2} | {02,1,212} | {0,101,(12)2} | {(01)2,121,2} | ||||||
Orbifold | 4*3 | 6*2 | 2*32 | 2*33 | 3*22 | ||||||
Direct subgroups | |||||||||||
Index | 2 | 4 | 8 | ||||||||
Diagram | |||||||||||
Coxeter | [6,4]+ |
[6,4+]+ |
[6+,4]+ |
[(6,4,2+)]+ |
[6+,4+]+ = [1+,6,1+,4,1+] = | ||||||
Generators | {01,12} | {(01)2,12} | {01,(12)2} | {02,(01)2,(12)2} | {(01)2,(12)2,201012} | ||||||
Orbifold | 642 | 443 | 662 | 3222 | 3232 | ||||||
Radical subgroups | |||||||||||
Index | 8 | 12 | 16 | 24 | |||||||
Diagram | |||||||||||
Coxeter (orbifold) |
[6,4*] (*3333) |
[6*,4] (*222222) |
[6,4*]+ (3333) |
[6*,4]+ (222222) |
Extended symmetry
| ||||||||||||||||||||||||||||||||||
In the Euclidean plane, the , [3[3]] Coxeter group can be extended in two ways into the , [6,3] Coxeter group and relates uniform tilings as ringed diagrams. |
Coxeter's notation includes double square bracket notation, [[X]] to express automorphic symmetry within a Coxeter diagram. Johnson added alternative of angled-bracket <[X]> or ⟨[X]⟩ option as equivalent to square brackets for doubling to distinguish diagram symmetry through the nodes versus through the branches. Johnson also added a prefix symmetry modifier [Y[X]], where Y can either represent symmetry of the Coxeter diagram of [X], or symmetry of the fundamental domain of [X].
For example, in 3D these equivalent rectangle and rhombic geometry diagrams of :
Further symmetry exists in the cyclic and branching , , and diagrams. has order 2n symmetry of a regular n-gon, {n}, and is represented by [n[3[n]]]. and are represented by [3[31,1,1]] = [3,4,3] and [3[32,2,2]] respectively while by [(3,3)[31,1,1,1]] = [3,3,4,3], with the diagram containing the order 24 symmetry of the regular tetrahedron, {3,3}. The paracompact hyperbolic group = [31,1,1,1,1],
An asterisk * superscript is effectively an inverse operation, creating radical subgroups removing connected of odd-ordered mirrors.[7]
Examples:
Example Extended groups and radical subgroups | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
Looking at generators, the double symmetry is seen as adding a new operator that maps symmetric positions in the Coxeter diagram, making some original generators redundant. For 3D space groups, and 4D point groups, Coxeter defines an index two subgroup of [[X]], [[X]+], which he defines as the product of the original generators of [X] by the doubling generator. This looks similar to [[X]]+, which is the chiral subgroup of [[X]]. So for example the 3D space groups [[4,3,4]]+ (I432, 211) and [[4,3,4]+] (Pm3n, 223) are distinct subgroups of [[4,3,4]] (Im3m, 229).
Computation with reflection matrices as symmetry generators
A Coxeter group, represented by Coxeter diagram
[p,q]+,
With one even branch, [p+,2q],
With even branches, [2p+,2q+],
In the case of affine Coxeter groups like
Another composite generator, by convention as ζ (and matrix Z), represents the inversion, mapping a point to its inverse. For [4,3] and [5,3], ζ = (ρ0ρ1ρ2)h/2, where h is 6 and 10 respectively, the Coxeter number for each family. For 3D Coxeter group [p,q] (
Coxeter groups are categorized by their rank, being the number of nodes in its Coxeter-Dynkin diagram. The structure of the groups are also given with their abstract group types: In this article, the abstract dihedral groups are represented as Dihn, and cyclic groups are represented by Zn, with Dih1=Z2.
Rank 2
Example, in 2D, the Coxeter group [p] (
|
| ||||||||||||||||||||||||||||||||
|
|
Rank 3
The finite rank 3 Coxeter groups are [1,p], [2,p], [3,3], [3,4], and [3,5].
To reflect a point through a plane (which goes through the origin), one can use , where is the 3x3 identity matrix and is the three-dimensional unit vector for the vector normal of the plane. If the L2 norm of and is unity, the transformation matrix can be expressed as:
Dihedral symmetry
The reducible 3-dimensional finite reflective group is dihedral symmetry, [p,2], order 4p,
Reflections | Rotation | Rotoreflection | |||||
---|---|---|---|---|---|---|---|
Name | R0 | R1 | R2 | S0,1 | S1,2 | S0,2 | V0,1,2 |
Group | |||||||
Order | 2 | 2 | 2 | p | 2 | 2p | |
Matrix |
|
|
|
|
|
|
|
Tetrahedral symmetry
The simplest irreducible 3-dimensional finite reflective group is tetrahedral symmetry, [3,3], order 24,
Reflections | Rotations | Rotoreflection | |||||
---|---|---|---|---|---|---|---|
Name | R0 | R1 | R2 | S0,1 | S1,2 | S0,2 | V0,1,2 |
Name | |||||||
Order | 2 | 2 | 2 | 3 | 2 | 4 | |
Matrix |
|
|
|
|
|
|
|
(0,1,-1)n | (1,-1,0)n | (0,1,1)n | (1,1,1)axis | (1,1,-1)axis | (1,0,0)axis |
Octahedral symmetry
Another irreducible 3-dimensional finite reflective group is octahedral symmetry, [4,3], order 48,
Reflections | Rotations | Rotoreflection | |||||
---|---|---|---|---|---|---|---|
Name | R0 | R1 | R2 | S0,1 | S1,2 | S0,2 | V0,1,2 |
Group | |||||||
Order | 2 | 2 | 2 | 4 | 3 | 2 | 6 |
Matrix |
|
|
|
|
|
|
|
(0,0,1)n | (0,1,-1)n | (1,-1,0)n | (1,0,0)axis | (1,1,1)axis | (1,-1,0)axis |
Icosahedral symmetry
A final irreducible 3-dimensional finite reflective group is icosahedral symmetry, [5,3], order 120,
Reflections | Rotations | Rotoreflection | |||||
---|---|---|---|---|---|---|---|
Name | R0 | R1 | R2 | S0,1 | S1,2 | S0,2 | V0,1,2 |
Group | |||||||
Order | 2 | 2 | 2 | 5 | 3 | 2 | 10 |
Matrix | |||||||
(1,0,0)n | (φ,1,φ-1)n | (0,1,0)n | (φ,1,0)axis | (1,1,1)axis | (1,0,0)axis |
Affine rank 3
A simple example affine group is [4,4] (
Reflections | Rotations | Rotoreflection | |||||
---|---|---|---|---|---|---|---|
Name | R0 | R1 | R2 | S0,1 | S1,2 | S0,2 | V0,1,2 |
Group | |||||||
Order | 2 | 2 | 2 | 4 | 2 | ∞ | |
Matrix |
|
|
|
|
|
|
|
Rank 4
Hyperoctahedral or hexadecachoric symmetry
A irreducible 4-dimensional finite reflective group is hyperoctahedral group (or hexadecachoric group (for 16-cell), B4=[4,3,3], order 384,
Chiral hyperoctahedral symmetry, [4,3,3]+, (
Reflections | Rotations | Rotoreflection | Double rotation | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | R0 | R1 | R2 | R3 | S0,1 | S1,2 | S2,3 | S0,2 | S1,3 | S0,3 | V1,2,3 | V0,1,3 | V0,1,2 | V0,2,3 | W0,1,2,3 |
Group | |||||||||||||||
Order | 2 | 2 | 2 | 2 | 4 | 3 | 2 | 4 | 6 | 8 | |||||
Matrix |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(0,0,0,1)n | (0,0,1,-1)n | (0,1,-1,0)n | (1,-1,0,0)n |
Hyperoctahedral subgroup D4 symmetry
A half group of the Hyperoctahedral group is D4, [3,31,1],
Reflections | ||||
---|---|---|---|---|
Name | R0 | R1 | R2 | R3 |
Group | ||||
Order | 2 | 2 | 2 | 2 |
Matrix |
|
|
|
|
(1,-1,0,0)n | (0,1,-1,0)n | (0,0,1,-1)n | (0,0,1,1)n |
Icositetrachoric symmetry
A irreducible 4-dimensional finite reflective group is Icositetrachoric group (for 24-cell), F4=[3,4,3], order 1152,
Chiral icositetrachoric symmetry, [3,4,3]+, (
Reflections | Rotations | Rotoreflection | Double rotation | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | R0 | R1 | R2 | R3 | S0,1 | S1,2 | S2,3 | S0,2 | S1,3 | S0,3 | V1,2,3 | V0,1,3 | V0,1,2 | V0,2,3 | W0,1,2,3 |
Group | |||||||||||||||
Order | 2 | 2 | 2 | 2 | 3 | 4 | 3 | 2 | 6 | 12 | |||||
Matrix |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(-1,-1,-1,-1)n | (0,0,1,0)n | (0,1,-1,0)n | (1,-1,0,0)n |
Hypericosahedral symmetry
The hyper-icosahedral symmetry, [5,3,3], order 14400,
Reflections | ||||
---|---|---|---|---|
Name | R0 | R1 | R2 | R3 |
Group | ||||
Order | 2 | 2 | 2 | 2 |
Matrix | ||||
(1,0,0,0)n | (φ,1,φ-1,0)n | (0,1,0,0)n | (0,-1,φ,1-φ)n |
Rank one groups
In one dimension, the bilateral group [ ] represents a single mirror symmetry, abstract Dih1 or Z2, symmetry order 2. It is represented as a Coxeter–Dynkin diagram with a single node,
Group | Coxeter notation | Coxeter diagram | Order | Description |
---|---|---|---|---|
C1 | [ ]+ | 1 | Identity | |
D1 | [ ] | 2 | Reflection group |
Rank two groups
In two dimensions, the rectangular group [2], abstract D12 or D2, also can be represented as a direct product [ ]×[ ], being the product of two bilateral groups, represents two orthogonal mirrors, with Coxeter diagram,
Coxeter notation to allow a 1 place-holder for lower rank groups, so [1] is the same as [ ], and [1+] or [1]+ is the same as [ ]+ and Coxeter diagram
The full p-gonal group [p], abstract dihedral group Dp, (nonabelian for p>2), of order 2p, is generated by two mirrors at angle π/p, represented by Coxeter diagram
Coxeter notation uses double-bracking to represent an automorphic doubling of symmetry by adding a bisecting mirror to the fundamental domain. For example, [[p]] adds a bisecting mirror to [p], and is isomorphic to [2p].
In the limit, going down to one dimensions, the full apeirogonal group is obtained when the angle goes to zero, so [∞], abstractly the infinite dihedral group D∞, represents two parallel mirrors and has a Coxeter diagram
In the hyperbolic plane, there is a full pseudogonal group [iπ/λ], and pseudogonal subgroup [iπ/λ]+,
Example rank 2 finite and hyperbolic symmetries | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Type | Finite | Affine | Hyperbolic | ||||||||
Geometry | ... | ||||||||||
Coxeter | [ ] |
[2]=[ ]×[ ] |
[3] |
[4] |
[p] |
[∞] |
[∞] |
[iπ/λ] | |||
Order | 2 | 4 | 6 | 8 | 2p | ∞ | |||||
Mirror lines are colored to correspond to Coxeter diagram nodes. Fundamental domains are alternately colored. | |||||||||||
Even images (direct) |
... | ||||||||||
Odd images (inverted) |
|||||||||||
Coxeter | [ ]+ |
[2]+ |
[3]+ |
[4]+ |
[p]+ |
[∞]+ |
[∞]+ |
[iπ/λ]+ | |||
Order | 1 | 2 | 3 | 4 | p | ∞ | |||||
Cyclic subgroups represent alternate reflections, all even (direct) images. |
Group | Intl | Orbifold | Coxeter | Coxeter diagram | Order | Description |
---|---|---|---|---|---|---|
Finite | ||||||
Zn | n | n• | [n]+ | n | Cyclic: n-fold rotations. Abstract group Zn, the group of integers under addition modulo n. | |
Dn | nm | *n• | [n] | 2n | Dihedral: cyclic with reflections. Abstract group Dihn, the dihedral group. | |
Affine | ||||||
Z∞ | ∞ | ∞• | [∞]+ | ∞ | Cyclic: apeirogonal group. Abstract group Z∞, the group of integers under addition. | |
Dih∞ | ∞m | *∞• | [∞] | ∞ | Dihedral: parallel reflections. Abstract infinite dihedral group Dih∞. | |
Hyperbolic | ||||||
Z∞ | [πi/λ]+ | ∞ | pseudogonal group | |||
Dih∞ | [πi/λ] | ∞ | full pseudogonal group |
Rank three groups
Point groups in 3 dimensions can be expressed in bracket notation related to the rank 3 Coxeter groups:
Finite groups of isometries in 3-space[2] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rotation groups | Extended groups | ||||||||||
Name | Bracket | Orb | Sch | Abstract | Order | Name | Bracket | Orb | Sch | Abstract | Order |
Identity | [ ]+ | 11 | C1 | Z1 | 1 | Bilateral | [1,1] = [ ] | * | D1 | D1 | 2 |
Central | [2+,2+] | × | Ci | 2×Z1 | 2 | ||||||
Acrorhombic | [1,2]+ = [2]+ | 22 | C2 | Z2 | 2 | Acrorectangular | [1,2] = [2] | *22 | C2v | D2 | 4 |
Gyrorhombic | [2+,4+] | 2× | S4 | Z4 | 4 | ||||||
Orthorhombic | [2,2+] | 2* | D1d | D1×Z2 | 4 | ||||||
Pararhombic | [2,2]+ | 222 | D2 | D2 | 4 | Gyrorectangular | [2+,4] | 2*2 | D2d | D4 | 8 |
Orthorectangular | [2,2] | *222 | D2h | D1×D2 | 8 | ||||||
Acro-p-gonal | [1,p]+ = [p]+ | pp | Cp | Zp | p | Full acro-p-gonal | [1,p] = [p] | *pp | Cpv | Dp | 2p |
Gyro-p-gonal | [2+,2p+] | p× | S2p | Z2p | 2p | ||||||
Ortho-p-gonal | [2,p+] | p* | Cph | D1×Zp | 2p | ||||||
Para-p-gonal | [2,p]+ | p22 | Dp | Dp | 2p | Full gyro-p-gonal | [2+,2p] | 2*p | Dpd | D2p | 4p |
Full ortho-p-gonal | [2,p] | *p22 | Dph | D1×Dp | 4p | ||||||
Tetrahedral | [3,3]+ | 332 | T | A4 | 12 | Full tetrahedral | [3,3] | *332 | Td | S4 | 24 |
Pyritohedral | [3+,4] | 3*2 | Th | 2×A4 | 24 | ||||||
Octahedral | [3,4]+ | 432 | O | S4 | 24 | Full octahedral | [3,4] | *432 | Oh | 2×S4 | 48 |
Icosahedral | [3,5]+ | 532 | I | A5 | 60 | Full icosahedral | [3,5] | *532 | Ih | 2×A5 | 120 |
In three dimensions, the full orthorhombic group or orthorectangular [2,2], abstractly D2×D2, order 8, represents three orthogonal mirrors, (also represented by Coxeter diagram as three separate dots
First there is a "semidirect" subgroup, the orthorhombic group, [2,2+] (
Next there is the full ortho-p-gonal group, [2,p] (
The direct subgroup is called the para-p-gonal group, [2,p]+ (
The full gyro-p-gonal group, [2+,2p] (
The polyhedral groups are based on the symmetry of platonic solids: the tetrahedron, octahedron, cube, icosahedron, and dodecahedron, with Schläfli symbols {3,3}, {3,4}, {4,3}, {3,5}, and {5,3} respectively. The Coxeter groups for these are: [3,3] (
In all these symmetries, alternate reflections can be removed producing the rotational tetrahedral [3,3]+(
The tetrahedral group, [3,3] (
Example rank 3 finite Coxeter groups subgroup trees | |
---|---|
Tetrahedral symmetry | Octahedral symmetry |
Icosahedral symmetry | |
Finite (point groups in three dimensions) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
Affine
In the Euclidean plane there's 3 fundamental reflective groups generated by 3 mirrors, represented by Coxeter diagrams
[[4,4]] as a doubling of the [4,4] group produced the same symmetry rotated π/4 from the original set of mirrors.
Direct subgroups of rotational symmetry are: [4,4]+, [6,3]+, and [(3,3,3)]+. [4+,4] and [6,3+] are semidirect subgroups.
|
|
Given in Coxeter notation (orbifold notation), some low index affine subgroups are:
Reflective group |
Reflective subgroup |
Mixed subgroup |
Rotation subgroup |
Improper rotation/ translation |
Commutator subgroup |
---|---|---|---|---|---|
[4,4], (*442) | [1+,4,4], (*442) [4,1+,4], (*2222) [1+,4,4,1+], (*2222) |
[4+,4], (4*2) [(4,4,2+)], (2*22) [1+,4,1+,4], (2*22) |
[4,4]+, (442) [1+,4,4+], (442) [1+,4,1+4,1+], (2222) |
[4+,4+], (22×) | [4+,4+]+, (2222) |
[6,3], (*632) | [1+,6,3] = [3[3]], (*333) | [3+,6], (3*3) | [6,3]+, (632) [1+,6,3+], (333) |
[1+,6,3+], (333) |
Rank four groups
Subgroup relations |
Point groups
Rank four groups defined the 4-dimensional point groups:
Finite groups | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
|
|
|
Subgroups
1D-4D reflective point groups and subgroups | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Order | Reflection | Semidirect subgroups |
Direct subgroups |
Commutator subgroup | |||||||
2 | [ ] | [ ]+ | [ ]+1 | [ ]+ | |||||||
4 | [2] | [2]+ | [2]+2 | ||||||||
8 | [2,2] | [2+,2] | [2+,2+] | [2,2]+ | [2,2]+3 | ||||||
16 | [2,2,2] | [2+,2,2] [(2,2)+,2] | [2+,2+,2] [(2,2)+,2+] [2+,2+,2+] | [2,2,2]+ [2+,2,2+] | [2,2,2]+4 | ||||||
[21,1,1] | [(2+)1,1,1] | ||||||||||
2n | [n] | [n]+ | [n]+1 | [n]+ | |||||||
4n | [2n] | [2n]+ | [2n]+2 | ||||||||
4n | [2,n] | [2,n+] | [2,n]+ | [2,n]+2 | |||||||
8n | [2,2n] | [2+,2n] | [2+,2n+] | [2,2n]+ | [2,2n]+3 | ||||||
8n | [2,2,n] | [2+,2,n] [2,2,n+] | [2+,(2,n)+] | [2,2,n]+ [2+,2,n+] | [2,2,n]+3 | ||||||
16n | [2,2,2n] | [2,2+,2n] | [2+,2+,2n] [2,2+,2n+] [(2,2)+,2n+] [2+,2+,2n+] | [2,2,2n]+ [2+,2n,2+] | [2,2,2n]+4 | ||||||
[2,2n,2] | [2+,2n+,2+] | ||||||||||
[2n,21,1] | [2n+,(2+)1,1] | ||||||||||
24 | [3,3] | [3,3]+ | [3,3]+1 | [3,3]+ | |||||||
48 | [3,3,2] | [(3,3)+,2] | [3,3,2]+ | [3,3,2]+2 | |||||||
48 | [4,3] | [4,3+] | [4,3]+ | [4,3]+2 | |||||||
96 | [4,3,2] | [(4,3)+,2] [4,(3,2)+] | [4,3,2]+ | [4,3,2]+3 | |||||||
[3,4,2] | [3,4,2+] [3+,4,2] | [(3,4)+,2+] | [3+,4,2+] | ||||||||
120 | [5,3] | [5,3]+ | [5,3]+1 | [5,3]+ | |||||||
240 | [5,3,2] | [(5,3)+,2] | [5,3,2]+ | [5,3,2]+2 | |||||||
4pq | [p,2,q] | [p+,2,q] | [p,2,q]+ [p+,2,q+] | [p,2,q]+2 | [p+,2,q+] | ||||||
8pq | [2p,2,q] | [2p,(2,q)+] | [2p+,(2,q)+] | [2p,2,q]+ | [2p,2,q]+3 | ||||||
16pq | [2p,2,2q] | [2p,2+,2q] | [2p+,2+,2q] [2p+,2+,2q+] [(2p,(2,2q)+,2+)] | - |
[2p,2,2q]+ | [2p,2,2q]+4 | |||||
120 | [3,3,3] | [3,3,3]+ | [3,3,3]+1 | [3,3,3]+ | |||||||
192 | [31,1,1] | [31,1,1]+ | [31,1,1]+1 | [31,1,1]+ | |||||||
384 | [4,3,3] | [4,(3,3)+] | [4,3,3]+ | [4,3,3]+2 | |||||||
1152 | [3,4,3] | [3+,4,3] | [3,4,3]+ [3+,4,3+] | [3,4,3]+2 | [3+,4,3+] | ||||||
14400 | [5,3,3] | [5,3,3]+ | [5,3,3]+1 | [5,3,3]+ |
Space groups
Space groups | ||
---|---|---|
Affine isomorphism and correspondences |
8 cubic space groups as extended symmetry from [3[4]], with square Coxeter diagrams and reflective fundamental domains |
35 cubic space groups in International, Fibrifold notation, and Coxeter notation |
Rank four groups as 3-dimensional space groups | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
|
|
Line groups
Rank four groups also defined the 3-dimensional line groups:
Semiaffine (3D) groups | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Point group | Line group | ||||||||||
Hermann-Mauguin | Schönflies | Hermann-Mauguin | Offset type | Wallpaper | Coxeter [∞h,2,pv] | ||||||
Even n | Odd n | Even n | Odd n | IUC | Orbifold | Diagram | |||||
n | Cn | Pnq | Helical: q | p1 | o | [∞+,2,n+] | |||||
2n | n | S2n | P2n | Pn | None | p11g, pg(h) | ×× | [(∞,2)+,2n+] | |||
n/m | 2n | Cnh | Pn/m | P2n | None | p11m, pm(h) | ** | [∞+,2,n] | |||
2n/m | C2nh | P2nn/m | Zigzag | c11m, cm(h) | *× | [∞+,2+,2n] | |||||
nmm | nm | Cnv | Pnmm | Pnm | None | p1m1, pm(v) | ** | [∞,2,n+] | |||
Pncc | Pnc | Planar reflection | p1g1, pg(v) | ×× | [∞+,(2,n)+] | ||||||
2nmm | C2nv | P2nnmc | Zigzag | c1m1, cm(v) | *× | [∞,2+,2n+] | |||||
n22 | n2 | Dn | Pnq22 | Pnq2 | Helical: q | p2 | 2222 | [∞,2,n]+ | |||
2n2m | nm | Dnd | P2n2m | Pnm | None | p2mg, pmg(h) | 22* | [(∞,2)+,2n] | |||
P2n2c | Pnc | Planar reflection | p2gg, pgg | 22× | [+(∞,(2),2n)+] | ||||||
n/mmm | 2n2m | Dnh | Pn/mmm | P2n2m | None | p2mm, pmm | *2222 | [∞,2,n] | |||
Pn/mcc | P2n2c | Planar reflection | p2mg, pmg(v) | 22* | [∞,(2,n)+] | ||||||
2n/mmm | D2nh | P2nn/mcm | Zigzag | c2mm, cmm | 2*22 | [∞,2+,2n] |
Duoprismatic group
Extended duoprismatic symmetry |
---|
Extended duoprismatic groups, [p]×[p] or [p,2,p] or |
Rank four groups defined the 4-dimensional duoprismatic groups. In the limit as p and q go to infinity, they degenerate into 2 dimensions and the wallpaper groups.
Duoprismatic groups (4D) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Wallpaper | Coxeter [p,2,q] |
Coxeter [[p,2,p]] |
Wallpaper | ||||||||
IUC | Orbifold | Diagram | IUC | Orbifold | Diagram | ||||||
p1 | o | [p+,2,q+] | [[p<sup>+</sup>,2,p<sup>+</sup>]] | p1 | o | ||||||
pg | ×× | [(p,2)+,2q+] | - | ||||||||
pm | ** | [p+,2,q] | - | ||||||||
cm | *× | [2p+,2+,2q] | - | ||||||||
p2 | 2222 | [p,2,q]+ | [[p,2,p]]+ | p4 | 442 | ||||||
pmg | 22* | [(p,2)+,2q] | - | ||||||||
pgg | 22× | [+(2p,(2),2q)+] | [[<sup>+</sup>(2p,(2),2p)<sup>+</sup>]] | cmm | 2*22 | ||||||
pmm | *2222 | [p,2,q] | [[p,2,p]] | p4m | *442 | ||||||
cmm | 2*22 | [2p,2+,2q] | [[2p,2<sup>+</sup>,2p]] | p4g | 4*2 |
Wallpaper groups
Rank four groups also defined some of the 2-dimensional wallpaper groups, as limiting cases of the four-dimensional duoprism groups:
Affine (2D plane) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
Subgroups of [∞,2,∞], (*2222) can be expressed down to its index 16 commutator subgroup:
Subgroups of [∞,2,∞] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Reflective group |
Reflective subgroup |
Mixed subgroup |
Rotation subgroup |
Improper rotation/ translation |
Commutator subgroup | ||||||
[∞,2,∞], (*2222) | [1+,∞,2,∞], (*2222) | [∞+,2,∞], (**) | [∞,2,∞]+, (2222) | [∞,2+,∞]+, (°) [∞+,2+,∞+], (°) [∞+,2,∞+], (°) [∞+,2+,∞], (*×) [(∞,2)+,∞+], (××) [+(∞,(2),∞)+], (22×) |
[(∞+,2+,∞+,2+)], (°) | ||||||
[∞,2+,∞], (2*22) [(∞,2)+,∞], (22*) |
Complex reflections
Coxeter notation has been extended to Complex space, Cn where nodes are unitary reflections of period greater than 2. Nodes are labeled by an index, assumed to be 2 for ordinary real reflection if suppressed. Complex reflection groups are called Shephard groups rather than Coxeter groups, and can be used to construct complex polytopes.
In , a rank 1 shephard group
Coxeter writes the rank 2 complex group, p[q]r represents Coxeter diagram
The rank 2 solutions that generate complex polygons are: p[4]2 (p is 2,3,4,...), 3[3]3, 3[6]2, 3[4]3, 4[3]4, 3[8]2, 4[6]2, 4[4]3, 3[5]3, 5[3]5, 3[10]2, 5[6]2, and 5[4]3 with Coxeter diagrams
Infinite groups are 3[12]2, 4[8]2, 6[6]2, 3[6]3, 6[4]3, 4[4]4, and 6[3]6 or
Index 2 subgroups exists by removing a real reflection: p[2q]2 → p[q]p. Also index r subgroups exist for 4 branches: p[4]r → p[r]p.
For the infinite family p[4]2, for any p = 2, 3, 4,..., there are two subgroups: p[4]2 → [p], index p, while and p[4]2 → p[]×p[], index 2.
Notes
- Johnson (2018), 11.6 Subgroups and extensions, p 255, halving subgroups
- Johnson (2018), pp.231-236, and p 245 Table 11.4 Finite groups of isometries in 3-space
- Johnson (2018), 11.6 Subgroups and extensions, p 259, radical subgroup
- Johnson (2018), 11.6 Subgroups and extensions, p 258, trionic subgroups
- Conway, 2003, p.46, Table 4.2 Chiral groups II
- Coxeter and Moser, 1980, Sec 9.5 Commutator subgroup, p. 124–126
- Johnson, Norman W.; Weiss, Asia Ivić (1999). "Quaternionic modular groups". Linear Algebra and Its Applications. 295 (1–3): 159–189. doi:10.1016/S0024-3795(99)00107-X.
- The Crystallographic Space groups in Geometric algebra, D. Hestenes and J. Holt, Journal of Mathematical Physics. 48, 023514 (2007) (22 pages) PDF
- Coxeter, Regular Complex Polytopes, 9.7 Two-generator subgroups reflections. pp. 178–179
References
- H.S.M. Coxeter:
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) Coxeter, H.S.M. (1940), "Regular and Semi Regular Polytopes I", Math. Z., 46: 380–407, doi:10.1007/bf01181449
- (Paper 23) Coxeter, H.S.M. (1985), "Regular and Semi-Regular Polytopes II", Math. Z., 188 (4): 559–591, doi:10.1007/bf01161657
- (Paper 24) Coxeter, H.S.M. (1988), "Regular and Semi-Regular Polytopes III", Math. Z., 200: 3–45, doi:10.1007/bf01161745
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- Coxeter, H. S. M.; Moser, W. O. J. (1980). Generators and Relations for Discrete Groups. New York: Springer-Verlag. ISBN 0-387-09212-9.
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
- Norman W. Johnson and Asia Ivic Weiss Quadratic Integers and Coxeter Groups PDF Can. J. Math. Vol. 51 (6), 1999 pp. 1307–1336
- N. W. Johnson: Geometries and Transformations, (2018) ISBN 978-1-107-10340-5 Chapter 11: Finite symmetry groups
- Conway, John Horton; Delgado Friedrichs, Olaf; Huson, Daniel H.; Thurston, William P. (2001), "On three-dimensional space groups", Beiträge zur Algebra und Geometrie. Contributions to Algebra and Geometry, 42 (2): 475–507, ISSN 0138-4821, MR 1865535
- John H. Conway and Derek A. Smith, On Quaternions and Octonions, 2003, ISBN 978-1-56881-134-5
- The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 Ch.22 35 prime space groups, ch.25 184 composite space groups, ch.26 Higher still, 4D point groups