Compound of five octahedra

The compound of five octahedra is one of the five regular polyhedron compounds. This polyhedron can be seen as either a polyhedral stellation or a compound. This compound was first described by Edmund Hess in 1876. It is unique among the regular compounds for not having a regular convex hull.

Compound of five octahedra
TypeRegular compound
IndexUC17, W23
Coxeter symbol[5{3,4}]2{3,5}[1]
Elements
(As a compound)
5 octahedra:
F = 40, E = 60, V = 30
Dual compoundCompound of five cubes
Symmetry groupicosahedral (Ih)
Subgroup restricting to one constituentpyritohedral (Th)
3D model of a compound of five octahedra

As a stellation

It is the second stellation of the icosahedron, and given as Wenninger model index 23.

It can be constructed by a rhombic triacontahedron with rhombic-based pyramids added to all the faces, as shown by the five colored model image. (This construction does not generate the regular compound of five octahedra, but shares the same topology and can be smoothly deformed into the regular compound.)

It has a density of greater than 1.

Stellation diagramStellation coreConvex hull

Icosahedron

Icosidodecahedron

As a compound

It can also be seen as a polyhedral compound of five octahedra arranged in icosahedral symmetry (Ih).

It shares its edges and half of its triangular faces with the compound of five tetrahemihexahedra.


Compound of five tetrahemihexahedra

As a spherical tiling the octahedra edges match the disdyakis triacontahedron

Stereographic projection

As a faceting

Five octahedra in an icosidodecahedron

It is also a faceting of an icosidodecahedron, shown at left.

Other 5-octahedra compounds

A second 5-octahedra compound, with octahedral symmetry, also exists. It can be generated by adding a fifth octahedra to the standard 4-octahedra compound.

gollark: Possibly. Very possibly.
gollark: Not much.
gollark: <:dcegg:325264593536679937> lunar moonlight glow reflective radiance beautiful glassy mana reddish gleam time distorted[everyone clicks egg]
gollark: Oh, well, my ARing stuff isn't subject to that restriction, so whatever.
gollark: Ah.

See also

References

  1. Regular polytopes, pp.49-50, p.98
  • Peter R. Cromwell, Polyhedra, Cambridge, 1997.
  • Wenninger, Magnus (1974). Polyhedron Models. Cambridge University Press. ISBN 0-521-09859-9.
  • Coxeter, Harold Scott MacDonald; Du Val, P.; Flather, H. T.; Petrie, J. F. (1999). The fifty-nine icosahedra (3rd ed.). Tarquin. ISBN 978-1-899618-32-3. MR 0676126. (1st Edn University of Toronto (1938))
  • H.S.M. Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, 3.6 The five regular compounds, pp.47-50, 6.2 Stellating the Platonic solids, pp.96-104
  • E. Hess 1876 Zugleich Gleicheckigen und Gleichflächigen Polyeder, Schriften der Gesellschaft zur Berörderung der Gasammten Naturwissenschaften zu Marburg 11 (1876) pp 5–97.
Notable stellations of the icosahedron
Regular Uniform duals Regular compounds Regular star Others
(Convex) icosahedron Small triambic icosahedron Medial triambic icosahedron Great triambic icosahedron Compound of five octahedra Compound of five tetrahedra Compound of ten tetrahedra Great icosahedron Excavated dodecahedron Final stellation
The stellation process on the icosahedron creates a number of related polyhedra and compounds with icosahedral symmetry.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.