Toyota Electronic Modulated Suspension

TEMS (Toyota Electronic Modulated Suspension) is a shock absorber that is electronically controlled (Continuous Damping Control) based on multiple factors, and was built and exclusively used by Toyota for selected products during the 1980s and 1990s (first introduced on the Toyota Soarer in 1983[1]). The semi-active suspension system was widely used on luxury and top sport trim packages on most of Toyota’s products sold internationally. Its popularity fell after the “bubble economy” as it was seen as an unnecessary expense to purchase and maintain, and remained in use on luxury or high performance sports cars.

Summary

TEMS consisted of four shock absorbers mounted at all four wheels, and could be used in either an automatic or driver selected mode based on the installation of the system used. The technology was installed on top-level Toyota products with four wheel independent suspension, labeled PEGASUS (Precision Engineered Geometrically Advanced SUSpension). Because of the nature of the technology, TEMS was installed on vehicles with front and rear independent suspensions. Although there were TEMS equipped cars with the rear dependent suspension too – the minibuses or minivans like Toyota TownAce/MasterAce, Toyota HiAce at the top package.

Based on road conditions, the system would increase or decrease ride damping force for particular situations. The TEMS system was easily installed to suit ride comfort, and road handling stability on small suspensions, adding a level of ride modification found on larger, more expensive luxury vehicles. The technology was originally developed and calibrated for Japanese driving conditions due to Japanese speed limits, but was adapted for international driving conditions with later revisions.

As the Japanese recession of the early 1990s began to take effect, the system was seen as an unnecessary expense as buyers were less inclined to purchase products and services seen as “luxury” and more focused on basic needs. TEMS installation was still achieved on vehicles that were considered luxurious, like the Toyota Crown, Toyota Century, Toyota Windom, and the Toyota Supra and Toyota Soarer sports cars.

Recently the technology has been installed on luxury minivans like the Toyota Alphard, Toyota Noah and the Toyota Voxy.

The TEMS system has been recently named “Piezo TEMS” (with piezoelectric ceramics),[2] “Skyhook TEMS” “Infinity TEMS” and more recently “AVS” (Adaptive Variable Suspension).

Configuration settings

The system was deployed with an earlier two-stage switch labeled “Auto-Sport”, with a later modification of “Auto-Soft-Mid-Hard”. Some variations used a dial to specifically select the level of hardness to the driver’s desires. For most driving situations, the “Auto” selection was recommended. When the system was activated, an indicator light reflected the suspension setting selected. The system components consisted of a control switch, indicator light, four shock absorbers, shock absorber control actuator, shock absorber control computer, vehicle speed sensor, stop lamp switch, with a throttle position sensor and a steering angle sensor on TEMS three stage systems only. All the absorbers are controlled with the same level of hardness.

Operation parameters of TEMS

The following describes how the system would activate on the earlier version installed during the 1980s on two stage TEMS

  • During normal running 100 km/h (62 mph)

The system chooses the "SOFT" selection, to provide a softer ride.

  • At high speeds 85–100 km/h (53–62 mph)

The system selects the "HARD" selection and determines that at high speeds, it assumes a more rigid configuration for better ride stability, and to reduce roll tendencies.

  • Braking (reducing speed to 50 km/h (31 mph))

In order to prevent “nose dive”, the process proceeds to "HARD" automatically damping force until it senses the brakes to be at the"SOFT" setting. It will return to the "SOFT" state when the brake light is off, and the pedal has been released after 2 seconds or more.

  • (Only 3-stage systems) during hard acceleration

To suppress suspension “squat” the system switches to "HARD" based on accelerator pedal position and throttle position.

  • (Only 3-stage systems) during hard cornering

To suppress suspension “roll” the system switches to "HARD" based on steering angle sensor position.

  • SPORT mode

The system remains in the "HARD" position regardless of driving conditions. (For 3-stage systems, the system automatically chooses between the “MID” and the "HARD" configurations - by the other words, the "SOFT" stage is excepted)

Vehicles installed

The following is a list of vehicles in Japan that were installed with the technology. There may have been vehicles exported internationally that were also equipped.

gollark: You can actually apply this to lots of things, like how the memetic evolution process doesn't select for "good" ideas but good-at-spreading ideas.
gollark: negative_utilitarianism_irl
gollark: They won't do their best to work out exactly what you intended and do it. The optimization process will produce things which do well at the optimization process.
gollark: Exactly.
gollark: And you DO NOT WANT your AI to be working out the most convenient loopholey way to satisfy the letter (well, the code) of "do not harm humans".

See also

References

Notes
  1. "Technical Development | Chassis". Toyota. 2012. Retrieved 2018-07-21.
  2. Tsuka, H.; Nakano, J.; Yokoya, Y. (1990-10-18). A new electronic controlled suspension using piezo-electric ceramics. IEEE Conference Publication. US: IEEE. doi:10.1109/EAIT.1990.205471. |access-date= requires |url= (help)
Sources
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.