State-transition matrix
In control theory, the state-transition matrix is a matrix whose product with the state vector at an initial time gives at a later time . The state-transition matrix can be used to obtain the general solution of linear dynamical systems.
Linear systems solutions
The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form
- ,
where are the states of the system, is the input signal, and are matrix functions, and is the initial condition at . Using the state-transition matrix , the solution is given by:[1][2]
The first term is known as the zero-input response and the second term is known as the zero-state response.
Peano–Baker series
The most general transition matrix is given by the Peano–Baker series
where is the identity matrix. This matrix converges uniformly and absolutely to a solution that exists and is unique.[2]
Other properties
The state transition matrix satisfies the following relationships:
1. It is continuous and has continuous derivatives.
2, It is never singular; in fact and , where is the identity matrix.
3. for all .[3]
4. for all .
5. It satisfies the differential equation with initial conditions .
6. The state-transition matrix , given by
where the matrix is the fundamental solution matrix that satisfies
- with initial condition .
7. Given the state at any time , the state at any other time is given by the mapping
Estimation of the state-transition matrix
In the time-invariant case, we can define , using the matrix exponential, as .
In the time-variant case, the state-transition matrix can be estimated from the solutions of the differential equation with initial conditions given by , , ..., . The corresponding solutions provide the columns of matrix . Now, from property 4, for all . The state-transition matrix must be determined before analysis on the time-varying solution can continue.
See also
References
- Baake, Michael; Schlaegel, Ulrike (2011). "The Peano Baker Series". Proceedings of the Steklov Institute of Mathematics. 275: 155–159.
- Rugh, Wilson (1996). Linear System Theory. Upper Saddle River, NJ: Prentice Hall. ISBN 0-13-441205-2.
- Brockett, Roger W. (1970). Finite Dimensional Linear Systems. John Wiley & Sons. ISBN 978-0-471-10585-5.
Further reading
- Baake, M.; Schlaegel, U. (2011). "The Peano Baker Series". Proceedings of the Steklov Institute of Mathematics. 275: 155–159.
- Brogan, W.L. (1991). Modern Control Theory. Prentice Hall. ISBN 0-13-589763-7.
Wikibooks has a book on the topic of: Control Systems/Time Variant System Solutions |