Idempotent matrix

In linear algebra, an idempotent matrix is a matrix which, when multiplied by itself, yields itself.[1][2] That is, the matrix is idempotent if and only if . For this product to be defined, must necessarily be a square matrix. Viewed this way, idempotent matrices are idempotent elements of matrix rings.

Example

Examples of idempotent matrices are:

Examples of idempotent matrices are:

Real 2 × 2 case

If a matrix is idempotent, then

  • implying so or
  • implying so or

Thus a necessary condition for a 2 × 2 matrix to be idempotent is that either it is diagonal or its trace equals 1. Notice that, for idempotent diagonal matrices, and must be either 1 or 0.

If , the matrix will be idempotent provided so a satisfies the quadratic equation

or

which is a circle with center (1/2, 0) and radius 1/2. In terms of an angle θ,

is idempotent.

However, is not a necessary condition: any matrix

with is idempotent.

Properties

Singularity and regularity

The only non-singular idempotent matrix is the identity matrix; that is, if a non-identity matrix is idempotent, its number of independent rows (and columns) is less than its number of rows (and columns).

This can be seen from writing , assuming that A has full rank (is non-singular), and pre-multiplying by to obtain .

When an idempotent matrix is subtracted from the identity matrix, the result is also idempotent. This holds since

.

A matrix A is idempotent if and only if for all positive integers n, . The 'if' direction trivially follows by taking . The 'only if' part can be shown using proof by induction. Clearly we have the result for , as . Suppose that . Then, , as required. Hence by the principle of induction, the result follows.

Eigenvalues

An idempotent matrix is always diagonalizable and its eigenvalues are either 0 or 1.[3]

Trace

The trace of an idempotent matrix — the sum of the elements on its main diagonal — equals the rank of the matrix and thus is always an integer. This provides an easy way of computing the rank, or alternatively an easy way of determining the trace of a matrix whose elements are not specifically known (which is helpful in statistics, for example, in establishing the degree of bias in using a sample variance as an estimate of a population variance).

Applications

Idempotent matrices arise frequently in regression analysis and econometrics. For example, in ordinary least squares, the regression problem is to choose a vector β of coefficient estimates so as to minimize the sum of squared residuals (mispredictions) ei: in matrix form,

Minimize

where is a vector of dependent variable observations, and is a matrix each of whose columns is a column of observations on one of the independent variables. The resulting estimator is

where superscript T indicates a transpose, and the vector of residuals is[2]

Here both and (the latter being known as the hat matrix) are idempotent and symmetric matrices, a fact which allows simplification when the sum of squared residuals is computed:

The idempotency of plays a role in other calculations as well, such as in determining the variance of the estimator .

An idempotent linear operator is a projection operator on the range space along its null space . is an orthogonal projection operator if and only if it is idempotent and symmetric.

gollark: I remember reading about some weirdness with static vs dynamic linking.
gollark: Hmm, solution: ship some kind of shim layer which converts the native APIs to some other format, release that under the GPL, but then don't GPLize any code which connects via that.
gollark: PotatOS is free and open source?
gollark: I should ship tape shuffler too!
gollark: And yes, it is very chaotic, potatOS ships two incompatible binary object serialization libraries, its own fork of GPS with dimension/server support, elliptic curve cryptography with SHA256 but also separate non-cryptographically-secure checksums for some reason, and a ton of random programs, some of which are actually just inlined in the code.

See also

References

  1. Chiang, Alpha C. (1984). Fundamental Methods of Mathematical Economics (3rd ed.). New York: McGraw–Hill. p. 80. ISBN 0070108137.
  2. Greene, William H. (2003). Econometric Analysis (5th ed.). Upper Saddle River, NJ: Prentice–Hall. pp. 808–809. ISBN 0130661899.
  3. Horn, Roger A.; Johnson, Charles R. (1990). Matrix analysis. Cambridge University Press. p. p. 148. ISBN 0521386322.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.