Square cupola

In geometry, the square cupola, sometimes called lesser dome, is one of the Johnson solids (J4). It can be obtained as a slice of the rhombicuboctahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in this case the base polygon is an octagon.

Square cupola
TypeJohnson
J3 - J4 - J5
Faces4 triangles
1+4 squares
1 octagon
Edges20
Vertices12
Vertex configuration8(3.4.8)
4(3.43)
Symmetry groupC4v, [4], (*44)
Rotation groupC4, [4]+, (44)
Dual polyhedron-
Propertiesconvex
Net
3D model of a square cupola

A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids, Archimedean solids, prisms, or antiprisms). They were named by Norman Johnson, who first listed these polyhedra in 1966.[1]

Formulae

The following formulae for the circumradius, surface area, volume, and height can be used if all faces are regular, with edge length a:

[2]
[3]
[4]
[5]

Other convex cupolae

Family of convex cupolae
n23456
Name{2} || t{2}{3} || t{3}{4} || t{4}{5} || t{5}{6} || t{6}
Cupola
Digonal cupola

Triangular cupola

Square cupola

Pentagonal cupola

Hexagonal cupola
(Flat)
Related
uniform
polyhedra
Triangular prism
Cubocta-
hedron

Rhombi-
cubocta-
hedron

Rhomb-
icosidodeca-
hedron

Rhombi-
trihexagonal
tiling

Dual polyhedron

The dual of the square cupola has 8 triangular and 4 kite faces:

Dual square cupola Net of dual 3D model

Crossed square cupola

3D model of a crossed square cupola

The crossed square cupola is one of the nonconvex Johnson solid isomorphs, being topologically identical to the convex square cupola. It can be obtained as a slice of the nonconvex great rhombicuboctahedron or quasirhombicuboctahedron, analogously to how the square cupola may be obtained as a slice of the rhombicuboctahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in this case the base polygon is an octagram.

It may be seen as a cupola with a retrograde square base, so that the squares and triangles connect across the bases in the opposite way to the square cupola, hence intersecting each other.

Honeycombs

The square cupola is a component of several nonuniform space-filling lattices:

gollark: Pascal's Mugging: someone comes up to you and says "give me £100 or I will eternally torture you and 10000 copies of you". Now, obviously, this is quite implausible. But it's a finite chance of an infinitely bad outcome, versus losing that finite amount of money, so you should do it, right?
gollark: I'm not a negative utilitarian, so no.
gollark: It's sort of the same thing the other way round.
gollark: Have you heard of Pascal's *Mugging*?
gollark: Sounds like negative utilitarianism, which is no.

References

  1. Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics, 18: 169–200, doi:10.4153/cjm-1966-021-8, MR 0185507, Zbl 0132.14603.
  2. Wolfram Research, Inc. (2020). "Wolfram|Alpha Knowledgebase". Champaign, IL. PolyhedronData[{"Johnson", 4}, "Circumradius"] Cite journal requires |journal= (help)
  3. Wolfram Research, Inc. (2020). "Wolfram|Alpha Knowledgebase". Champaign, IL. PolyhedronData[{"Johnson", 4}, "SurfaceArea"] Cite journal requires |journal= (help)
  4. Wolfram Research, Inc. (2020). "Wolfram|Alpha Knowledgebase". Champaign, IL. PolyhedronData[{"Johnson", 4}, "Volume"] Cite journal requires |journal= (help)
  5. Sapiña, R. "Area and volume of the Johnson solid J₄". Problemas y ecuaciones (in Spanish). ISSN 2659-9899. Retrieved 2020-07-16.
  6. http://woodenpolyhedra.web.fc2.com/J4.html


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.