Lucinidae

Lucinidae is a family of saltwater clams, marine bivalve molluscs.

Lucinidae
Temporal range: Silurian – Present
Divaricella huttoniana
Scientific classification
Kingdom: Animalia
Phylum: Mollusca
Class: Bivalvia
Subclass: Heterodonta
Order: Lucinida
Superfamily: Lucinoidea
Family: Lucinidae
Fleming, 1828
Genera

See text.

These bivalves are remarkable for their endosymbiosis with sulphide-oxidizing bacteria.[1]

Characteristics

The members of this family are found in muddy sand or gravel at or below low tide mark. They have characteristically rounded shells with forward-facing projections. The valves are flattened and etched with concentric rings. Each valve bears two cardinal and two plate-like lateral teeth. These molluscs do not have siphons but the extremely long foot makes a channel which is then lined with slime and serves for the intake and expulsion of water.[2]

Symbiosis

Lucinids host their sulfur-oxidizing symbionts in specialized gill cells called bacteriocytes.[3] Lucinids are burrowing bivalves that live in environments with sulfide-rich sediments.[4] The bivalve will pump sulfide-rich water over its gills from the inhalant siphon in order to provide symbionts with sulfur and oxygen.[4] The endosymbionts then use these substrates to fix carbon into organic compounds, which are then transferred to the host as nutrients.[5] During periods of starvation, lucinids may harvest and digest their symbionts as food.[5]

Symbionts are acquired via phagocytosis of bacteria by bacterioctyes.[6] Symbiont transmission occurs horizontally, where juvenile lucinids are aposymbiotic and acquire their symbionts from the environment in each generation.[7] Lucinids maintain their symbiont population by reacquiring sulfur-oxidizing bacteria throughout their lifetime.[8] Although process of symbiont acquisition is not entirely characterized, it likely involves the use of the binding protein, codakine, isolated from the lucinid bivalve, Codakia orbicularis.[9] It is also known that symbionts do not replicate within bacteriocytes because of inhibition by the host. However, this mechanism is not well understood.[8]

Lucinid bivalves originated in the Silurian; however, they did not diversify until the late Cretaceous, along with the evolution of seagrass meadows and mangrove swamps.[10] Lucinids were able to colonize these sulfide rich sediments because they already maintained a population of sulfide-oxidizing symbionts. In modern environments, seagrass, lucinid bivalves, and the sulfur-oxidizing symbionts constitute a three-way symbiosis. Because of the lack of oxygen in coastal marine sediments, dense seagrass meadows produce sulfide-rich sediments by trapping organic matter that is later decomposed by sulfate-reducing bacteria.[11] The lucinid-symbiont holobiont removes toxic sulfide from the sediment, and the seagrass roots provide oxygen to the bivalve-symbiont system.[11]

The symbionts from at least two species of lucinid clams, Codakia orbicularis and Loripes lucinalis, are able to fix nitrogen gas into organic nitrogen.[12][13]

Genera and species

The species and genera include:

  • Alucinoma Habe, 1958
    • Alucinoma soyae Habe, 1958
  • Anodontia Link, 1807
  • Bretskya Glover & Taylor, 2007
    • Bretskya scapula Glover & Taylor, 2007
  • Cardiolucina
    • Cardiolucina undula Glover & Taylor, 2007
  • Cavilucina
  • Chavania
    • Chavania striata (Tokunaga, 1906)
  • Clathrolucina J. D. Taylor & Glover, 2013
    • Clathrolucina costata (d'Orbigny, 1845)
  • Codakia Scopoli, 1777
  • Ctena Mörch, 1860
    • Ctena bella (Conrad, 1837)
    • Ctena transversa
  • Divalinga Chavan, 1951
  • Divaricella von Martens, 1880
  • Epicodakia Iredale, 1930
    • Epicodakia neozelanica Powell, 1937
    • Epicodakia nodulosa Glover & Taylor, 2007
    • Epicodakia sweeti (Hedley, 1899)
  • Epilucina Dall, 1901
  • Ferrocina Glover & Taylor, 2007
    • Ferrocina multiradiata Glover & Taylor, 2007
  • Fimbria (traditionally placed in the separate family Fimbriidae)
  • Funafutia
    • Funafutia levukana (Smith, 1885)
  • Gonimyrtea Marwick, 1929
    • Gonimyrtea avia Glover & Taylor, 2007
    • Gonimyrtea concinna (Hutton, 1885)
    • Gonimyrtea fidelis Glover & Taylor, 2007
  • Here Gabb, 1866
    • Here excavata (Carpenter, 1857)
    • Here ricthofeni (Gabb, 1866)
  • Lepidolucina Glover & Taylor, 2007
    • Lepidolucina belepia Glover & Taylor, 2007
  • Leucosphaera Taylor & Glover, 2005
    • Leucosphaera diaphana Glover & Taylor, 2007
    • Leucosphaera salamensis (Thiele & Jaeckel, 1931)
  • Linga De Gregorio, 1884
    • Linga amiantus (Dall, 1886)
    • Linga cancellaris (Philippi, 1846)
    • Linga columbella Lamarck, 1819
    • Linga excavata (Carpenter, 1857)
    • Linga leucocyma Dall, 1886
    • Linga leucocymoides (Lowe, 1935)
    • Linga pensylvanica (Linnaeus, 1758)
    • Linga sombrerensis (Dall, 1886)
    • Linga undatoides (Hertlein and Strong, 1945)
  • Liralucina Glover & Taylor, 2007
    • Liralucina craticula Glover & Taylor, 2007
    • Liralucina lifouina Glover & Taylor, 2007
    • Liralucina sperabilis (Hedley, 1909)
    • Liralucina vaubani Glover & Taylor, 2007
  • Loripes Poli, 1791
  • Lucina Bruguière, [1797][14]
  • Lucinella Monterosato, 1883
  • Lucinisca Dall, 1901
    • Lucinisca muricata (Spengler, 1798)
    • Lucinisca nassula (Conrad, 1846)
    • Lucinisca nuttalli (Conrad, 1837)
  • Lucinoma Dall, 1901
    • Lucinoma aequizonatum (Stearns, 1890)
    • Lucinoma annulatum (Reeve, 1850)
    • Lucinoma atlantis R. A. Mclean, 1936
    • Lucinoma blakeanum (Bush, 1893)
    • Lucinoma borealis
    • Lucinoma filosa (Stimpson, 1851)
    • Lucinoma filosum (Stimpson, 1851)
    • Lucinoma galathea Marwick, 1953)
    • Lucinoma heroica (Dall, 1901)
    • Lucinoma kazani Salas & Woodside, 2002
  • Myrtea Turton, 1822
    • Myrtea compressa (Dall, 1881)
    • Myrtea lens (A. E. Verrill and S. Smith, 1880)
    • Myrtea pristiphora Dall and Simpson, 1901
    • Myrtea sagrinata (Dall, 1886)
    • Myrtea spinifera Montagu, 1803
  • Myrtina Glover & Taylor, 2007
    • Myrtina leptolira Glover & Taylor, 2007
    • Myrtina porcata Glover & Taylor, 2007
  • Notomyrtea Iredale, 1924
    • Notomyrtea botanica Hedley, 1918
    • Notomyrtea vincentia Glover & Taylor, 2007
  • Parvidontia Glover & Taylor, 2007
    • Parvidontia laevis Glover & Taylor, 2007
  • Parvilucina Dall, 1901
    • Parvilucina approximata (Dall, 1901)
    • Parvilucina blanda (Bland and Simpson, 1901)
    • Parvilucina lampra (Dall, 1901)
    • Parvilucina lingualis (Carpenter, 1864)
    • Parvilucina mazatlanica (Carpenter, 1855)
    • Parvilucina multilineata (Tuomey and Holmes, 1857)
    • Parvilucina tenuisculpta (Carpenter, 1864)
  • Pillucina Pilsbry, 1921
    • Pillucina copiosa Glover & Taylor, 2007
    • Pillucina hawaiiensis
    • Pillucina spaldingi Pilsbry, 1921
    • Pillucina pacifica Glover & Taylor, 2001
  • Poumea Glover & Taylor, 2007
    • Poumea coselia Glover & Taylor, 2007
  • Pseudomiltha
    • Pseudomiltha floridana (Conrad, 1833)
    • Pseudomiltha tixierae Klein, 1967
  • Solelucina Glover & Taylor, 2007
    • Solelucina koumacia Glover & Taylor, 2007
  • Stewartia Olsson, A. & Harbison, A. 1953
  • Wallucina
    • Wallucina fijiensis (Smith, 1885)
gollark: Please cease your random spamming, <@!565075471012855820>.
gollark: Nvidia drivers are not very good on Linux, but they're arguably worse on Windows so... yay?
gollark: <@!151391317740486657> Most Linux distros are perfectly fine for desktops *and* servers, though obviously with different configuration.
gollark: How do you do that while still keeping network access?
gollark: <@151391317740486657> I mean, that much CPU being used on "telemetry" and a "font cache service" is somewhat problem.

References

  1. Taylor, J. D.; Glover, E. A. (2006-11-24). "Lucinidae (Bivalvia) - the most diverse group of chemosymbiotic molluscs". Zoological Journal of the Linnean Society. 148 (3): 421–438. doi:10.1111/j.1096-3642.2006.00261.x. ISSN 0024-4082.
  2. Barrett, J. H. and C. M. Yonge, 1958. Collins Pocket Guide to the Sea Shore. P. 161. Collins, London
  3. Roeselers, Guus; Newton, Irene L. G. (2012-02-22). "On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves". Applied Microbiology and Biotechnology. 94 (1): 1–10. doi:10.1007/s00253-011-3819-9. ISSN 0175-7598. PMC 3304057. PMID 22354364.
  4. Seilacher, Adolf (1990-01-01). "Aberrations in bivalve evolution related to photo‐ and chemosymbiosis". Historical Biology. 3 (4): 289–311. doi:10.1080/08912969009386528. ISSN 0891-2963.
  5. König, Sten; Le Guyader, Hervé; Gros, Olivier (2015-02-01). "Thioautotrophic bacterial endosymbionts are degraded by enzymatic digestion during starvation: Case study of two lucinids Codakia orbicularis and C. orbiculata" (PDF). Microscopy Research and Technique. 78 (2): 173–179. doi:10.1002/jemt.22458. ISSN 1097-0029. PMID 25429862.
  6. Elisabeth, Nathalie H.; Gustave, Sylvie D.D.; Gros, Olivier (2012-08-01). "Cell proliferation and apoptosis in gill filaments of the lucinid Codakia orbiculata (Montagu, 1808) (Mollusca: Bivalvia) during bacterial decolonization and recolonization". Microscopy Research and Technique. 75 (8): 1136–1146. doi:10.1002/jemt.22041. ISSN 1097-0029. PMID 22438018.
  7. Bright, Monika; Bulgheresi, Silvia (2010-03-01). "A complex journey: transmission of microbial symbionts". Nature Reviews Microbiology. 8 (3): 218–230. doi:10.1038/nrmicro2262. ISSN 1740-1526. PMC 2967712. PMID 20157340.
  8. Gros, Olivier; Elisabeth, Nathalie H.; Gustave, Sylvie D. D.; Caro, Audrey; Dubilier, Nicole (2012-06-01). "Plasticity of symbiont acquisition throughout the life cycle of the shallow-water tropical lucinid Codakia orbiculata (Mollusca: Bivalvia)". Environmental Microbiology. 14 (6): 1584–1595. doi:10.1111/j.1462-2920.2012.02748.x. ISSN 1462-2920. PMID 22672589.
  9. Gourdine, Jean-Philippe; Smith-Ravin, Emilie Juliette (2007-05-01). "Analysis of a cDNA-derived sequence of a novel mannose-binding lectin, codakine, from the tropical clam Codakia orbicularis". Fish & Shellfish Immunology. 22 (5): 498–509. doi:10.1016/j.fsi.2006.06.013. PMID 17169576.
  10. Stanley, S. M. (2014). "Evolutionary radiation of shallow-water Lucinidae (Bivalvia with endosymbionts) as a result of the rise of seagrasses and mangroves". Geology. 42 (9): 803–806. doi:10.1130/g35942.1.
  11. Heide, Tjisse van der; Govers, Laura L.; Fouw, Jimmy de; Olff, Han; Geest, Matthijs van der; Katwijk, Marieke M. van; Piersma, Theunis; Koppel, Johan van de; Silliman, Brian R. (2012-06-15). "A Three-Stage Symbiosis Forms the Foundation of Seagrass Ecosystems". Science. 336 (6087): 1432–1434. doi:10.1126/science.1219973. ISSN 0036-8075. PMID 22700927.
  12. Petersen, Jillian M.; Kemper, Anna; Gruber-Vodicka, Harald; Cardini, Ulisse; Geest, Matthijs van der; Kleiner, Manuel; Bulgheresi, Silvia; Mußmann, Marc; Herbold, Craig (2016-10-24). "Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation". Nature Microbiology. 2 (1): 16195. doi:10.1038/nmicrobiol.2016.195. ISSN 2058-5276. PMC 6872982. PMID 27775707.
  13. König, Sten; Gros, Olivier; Heiden, Stefan E.; Hinzke, Tjorven; Thürmer, Andrea; Poehlein, Anja; Meyer, Susann; Vatin, Magalie; Mbéguié-A-Mbéguié, Didier (2016-10-24). "Nitrogen fixation in a chemoautotrophic lucinid symbiosis". Nature Microbiology. 2 (1): 16193. doi:10.1038/nmicrobiol.2016.193. ISSN 2058-5276. PMID 27775698.
  14. Academy of Natural Sciences. Gabb's California Cretaceous & Tertiary Type Lamellibranchs: Special Publications of The Acad. of Natural Sciences of Phila., No. 3. p. 175. ISBN 9781422317761.
  15. Olsson, Axel; Harbison, Anne (1953). Pliocene Mollusca of Southern Florida with special reference to those from North Saint Petersburg. Philadelphia: Academy of Natural Sciences.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.