Lucinidae

Lucinidae is a family of saltwater clams, marine bivalve molluscs.

Lucinidae
Temporal range: Silurian – Present
Divaricella huttoniana
Scientific classification
Kingdom: Animalia
Phylum: Mollusca
Class: Bivalvia
Subclass: Heterodonta
Order: Lucinida
Superfamily: Lucinoidea
Family: Lucinidae
Fleming, 1828
Genera

See text.

These bivalves are remarkable for their endosymbiosis with sulphide-oxidizing bacteria.[1]

Characteristics

The members of this family are found in muddy sand or gravel at or below low tide mark. They have characteristically rounded shells with forward-facing projections. The valves are flattened and etched with concentric rings. Each valve bears two cardinal and two plate-like lateral teeth. These molluscs do not have siphons but the extremely long foot makes a channel which is then lined with slime and serves for the intake and expulsion of water.[2]

Symbiosis

Lucinids host their sulfur-oxidizing symbionts in specialized gill cells called bacteriocytes.[3] Lucinids are burrowing bivalves that live in environments with sulfide-rich sediments.[4] The bivalve will pump sulfide-rich water over its gills from the inhalant siphon in order to provide symbionts with sulfur and oxygen.[4] The endosymbionts then use these substrates to fix carbon into organic compounds, which are then transferred to the host as nutrients.[5] During periods of starvation, lucinids may harvest and digest their symbionts as food.[5]

Symbionts are acquired via phagocytosis of bacteria by bacterioctyes.[6] Symbiont transmission occurs horizontally, where juvenile lucinids are aposymbiotic and acquire their symbionts from the environment in each generation.[7] Lucinids maintain their symbiont population by reacquiring sulfur-oxidizing bacteria throughout their lifetime.[8] Although process of symbiont acquisition is not entirely characterized, it likely involves the use of the binding protein, codakine, isolated from the lucinid bivalve, Codakia orbicularis.[9] It is also known that symbionts do not replicate within bacteriocytes because of inhibition by the host. However, this mechanism is not well understood.[8]

Lucinid bivalves originated in the Silurian; however, they did not diversify until the late Cretaceous, along with the evolution of seagrass meadows and mangrove swamps.[10] Lucinids were able to colonize these sulfide rich sediments because they already maintained a population of sulfide-oxidizing symbionts. In modern environments, seagrass, lucinid bivalves, and the sulfur-oxidizing symbionts constitute a three-way symbiosis. Because of the lack of oxygen in coastal marine sediments, dense seagrass meadows produce sulfide-rich sediments by trapping organic matter that is later decomposed by sulfate-reducing bacteria.[11] The lucinid-symbiont holobiont removes toxic sulfide from the sediment, and the seagrass roots provide oxygen to the bivalve-symbiont system.[11]

The symbionts from at least two species of lucinid clams, Codakia orbicularis and Loripes lucinalis, are able to fix nitrogen gas into organic nitrogen.[12][13]

Genera and species

The species and genera include:

  • Alucinoma Habe, 1958
    • Alucinoma soyae Habe, 1958
  • Anodontia Link, 1807
  • Bretskya Glover & Taylor, 2007
    • Bretskya scapula Glover & Taylor, 2007
  • Cardiolucina
    • Cardiolucina undula Glover & Taylor, 2007
  • Cavilucina
  • Chavania
    • Chavania striata (Tokunaga, 1906)
  • Clathrolucina J. D. Taylor & Glover, 2013
    • Clathrolucina costata (d'Orbigny, 1845)
  • Codakia Scopoli, 1777
  • Ctena Mörch, 1860
    • Ctena bella (Conrad, 1837)
    • Ctena transversa
  • Divalinga Chavan, 1951
  • Divaricella von Martens, 1880
  • Epicodakia Iredale, 1930
    • Epicodakia neozelanica Powell, 1937
    • Epicodakia nodulosa Glover & Taylor, 2007
    • Epicodakia sweeti (Hedley, 1899)
  • Epilucina Dall, 1901
  • Ferrocina Glover & Taylor, 2007
    • Ferrocina multiradiata Glover & Taylor, 2007
  • Fimbria (traditionally placed in the separate family Fimbriidae)
  • Funafutia
    • Funafutia levukana (Smith, 1885)
  • Gonimyrtea Marwick, 1929
    • Gonimyrtea avia Glover & Taylor, 2007
    • Gonimyrtea concinna (Hutton, 1885)
    • Gonimyrtea fidelis Glover & Taylor, 2007
  • Here Gabb, 1866
    • Here excavata (Carpenter, 1857)
    • Here ricthofeni (Gabb, 1866)
  • Lepidolucina Glover & Taylor, 2007
    • Lepidolucina belepia Glover & Taylor, 2007
  • Leucosphaera Taylor & Glover, 2005
    • Leucosphaera diaphana Glover & Taylor, 2007
    • Leucosphaera salamensis (Thiele & Jaeckel, 1931)
  • Linga De Gregorio, 1884
    • Linga amiantus (Dall, 1886)
    • Linga cancellaris (Philippi, 1846)
    • Linga columbella Lamarck, 1819
    • Linga excavata (Carpenter, 1857)
    • Linga leucocyma Dall, 1886
    • Linga leucocymoides (Lowe, 1935)
    • Linga pensylvanica (Linnaeus, 1758)
    • Linga sombrerensis (Dall, 1886)
    • Linga undatoides (Hertlein and Strong, 1945)
  • Liralucina Glover & Taylor, 2007
    • Liralucina craticula Glover & Taylor, 2007
    • Liralucina lifouina Glover & Taylor, 2007
    • Liralucina sperabilis (Hedley, 1909)
    • Liralucina vaubani Glover & Taylor, 2007
  • Loripes Poli, 1791
  • Lucina Bruguière, [1797][14]
  • Lucinella Monterosato, 1883
  • Lucinisca Dall, 1901
    • Lucinisca muricata (Spengler, 1798)
    • Lucinisca nassula (Conrad, 1846)
    • Lucinisca nuttalli (Conrad, 1837)
  • Lucinoma Dall, 1901
    • Lucinoma aequizonatum (Stearns, 1890)
    • Lucinoma annulatum (Reeve, 1850)
    • Lucinoma atlantis R. A. Mclean, 1936
    • Lucinoma blakeanum (Bush, 1893)
    • Lucinoma borealis
    • Lucinoma filosa (Stimpson, 1851)
    • Lucinoma filosum (Stimpson, 1851)
    • Lucinoma galathea Marwick, 1953)
    • Lucinoma heroica (Dall, 1901)
    • Lucinoma kazani Salas & Woodside, 2002
  • Myrtea Turton, 1822
    • Myrtea compressa (Dall, 1881)
    • Myrtea lens (A. E. Verrill and S. Smith, 1880)
    • Myrtea pristiphora Dall and Simpson, 1901
    • Myrtea sagrinata (Dall, 1886)
    • Myrtea spinifera Montagu, 1803
  • Myrtina Glover & Taylor, 2007
    • Myrtina leptolira Glover & Taylor, 2007
    • Myrtina porcata Glover & Taylor, 2007
  • Notomyrtea Iredale, 1924
    • Notomyrtea botanica Hedley, 1918
    • Notomyrtea vincentia Glover & Taylor, 2007
  • Parvidontia Glover & Taylor, 2007
    • Parvidontia laevis Glover & Taylor, 2007
  • Parvilucina Dall, 1901
    • Parvilucina approximata (Dall, 1901)
    • Parvilucina blanda (Bland and Simpson, 1901)
    • Parvilucina lampra (Dall, 1901)
    • Parvilucina lingualis (Carpenter, 1864)
    • Parvilucina mazatlanica (Carpenter, 1855)
    • Parvilucina multilineata (Tuomey and Holmes, 1857)
    • Parvilucina tenuisculpta (Carpenter, 1864)
  • Pillucina Pilsbry, 1921
    • Pillucina copiosa Glover & Taylor, 2007
    • Pillucina hawaiiensis
    • Pillucina spaldingi Pilsbry, 1921
    • Pillucina pacifica Glover & Taylor, 2001
  • Poumea Glover & Taylor, 2007
    • Poumea coselia Glover & Taylor, 2007
  • Pseudomiltha
    • Pseudomiltha floridana (Conrad, 1833)
    • Pseudomiltha tixierae Klein, 1967
  • Solelucina Glover & Taylor, 2007
    • Solelucina koumacia Glover & Taylor, 2007
  • Stewartia Olsson, A. & Harbison, A. 1953
  • Wallucina
    • Wallucina fijiensis (Smith, 1885)
gollark: GTX 1050! Quite bad.
gollark: ......
gollark: Our entire Krist economy is based on the Krist node, which Lemmmy can't get to work correctly and which errors constantly if you try any configuration other than what is tested on the production server.
gollark: I *was*, but didn't get much, and besides that it made other stuff on my computer slow.
gollark: Lots of names bought.

References

  1. Taylor, J. D.; Glover, E. A. (2006-11-24). "Lucinidae (Bivalvia) - the most diverse group of chemosymbiotic molluscs". Zoological Journal of the Linnean Society. 148 (3): 421–438. doi:10.1111/j.1096-3642.2006.00261.x. ISSN 0024-4082.
  2. Barrett, J. H. and C. M. Yonge, 1958. Collins Pocket Guide to the Sea Shore. P. 161. Collins, London
  3. Roeselers, Guus; Newton, Irene L. G. (2012-02-22). "On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves". Applied Microbiology and Biotechnology. 94 (1): 1–10. doi:10.1007/s00253-011-3819-9. ISSN 0175-7598. PMC 3304057. PMID 22354364.
  4. Seilacher, Adolf (1990-01-01). "Aberrations in bivalve evolution related to photo‐ and chemosymbiosis". Historical Biology. 3 (4): 289–311. doi:10.1080/08912969009386528. ISSN 0891-2963.
  5. König, Sten; Le Guyader, Hervé; Gros, Olivier (2015-02-01). "Thioautotrophic bacterial endosymbionts are degraded by enzymatic digestion during starvation: Case study of two lucinids Codakia orbicularis and C. orbiculata" (PDF). Microscopy Research and Technique. 78 (2): 173–179. doi:10.1002/jemt.22458. ISSN 1097-0029. PMID 25429862.
  6. Elisabeth, Nathalie H.; Gustave, Sylvie D.D.; Gros, Olivier (2012-08-01). "Cell proliferation and apoptosis in gill filaments of the lucinid Codakia orbiculata (Montagu, 1808) (Mollusca: Bivalvia) during bacterial decolonization and recolonization". Microscopy Research and Technique. 75 (8): 1136–1146. doi:10.1002/jemt.22041. ISSN 1097-0029. PMID 22438018.
  7. Bright, Monika; Bulgheresi, Silvia (2010-03-01). "A complex journey: transmission of microbial symbionts". Nature Reviews Microbiology. 8 (3): 218–230. doi:10.1038/nrmicro2262. ISSN 1740-1526. PMC 2967712. PMID 20157340.
  8. Gros, Olivier; Elisabeth, Nathalie H.; Gustave, Sylvie D. D.; Caro, Audrey; Dubilier, Nicole (2012-06-01). "Plasticity of symbiont acquisition throughout the life cycle of the shallow-water tropical lucinid Codakia orbiculata (Mollusca: Bivalvia)". Environmental Microbiology. 14 (6): 1584–1595. doi:10.1111/j.1462-2920.2012.02748.x. ISSN 1462-2920. PMID 22672589.
  9. Gourdine, Jean-Philippe; Smith-Ravin, Emilie Juliette (2007-05-01). "Analysis of a cDNA-derived sequence of a novel mannose-binding lectin, codakine, from the tropical clam Codakia orbicularis". Fish & Shellfish Immunology. 22 (5): 498–509. doi:10.1016/j.fsi.2006.06.013. PMID 17169576.
  10. Stanley, S. M. (2014). "Evolutionary radiation of shallow-water Lucinidae (Bivalvia with endosymbionts) as a result of the rise of seagrasses and mangroves". Geology. 42 (9): 803–806. doi:10.1130/g35942.1.
  11. Heide, Tjisse van der; Govers, Laura L.; Fouw, Jimmy de; Olff, Han; Geest, Matthijs van der; Katwijk, Marieke M. van; Piersma, Theunis; Koppel, Johan van de; Silliman, Brian R. (2012-06-15). "A Three-Stage Symbiosis Forms the Foundation of Seagrass Ecosystems". Science. 336 (6087): 1432–1434. doi:10.1126/science.1219973. ISSN 0036-8075. PMID 22700927.
  12. Petersen, Jillian M.; Kemper, Anna; Gruber-Vodicka, Harald; Cardini, Ulisse; Geest, Matthijs van der; Kleiner, Manuel; Bulgheresi, Silvia; Mußmann, Marc; Herbold, Craig (2016-10-24). "Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation". Nature Microbiology. 2 (1): 16195. doi:10.1038/nmicrobiol.2016.195. ISSN 2058-5276. PMC 6872982. PMID 27775707.
  13. König, Sten; Gros, Olivier; Heiden, Stefan E.; Hinzke, Tjorven; Thürmer, Andrea; Poehlein, Anja; Meyer, Susann; Vatin, Magalie; Mbéguié-A-Mbéguié, Didier (2016-10-24). "Nitrogen fixation in a chemoautotrophic lucinid symbiosis". Nature Microbiology. 2 (1): 16193. doi:10.1038/nmicrobiol.2016.193. ISSN 2058-5276. PMID 27775698.
  14. Academy of Natural Sciences. Gabb's California Cretaceous & Tertiary Type Lamellibranchs: Special Publications of The Acad. of Natural Sciences of Phila., No. 3. p. 175. ISBN 9781422317761.
  15. Olsson, Axel; Harbison, Anne (1953). Pliocene Mollusca of Southern Florida with special reference to those from North Saint Petersburg. Philadelphia: Academy of Natural Sciences.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.