Lithotripsy

Lithotripsy is a medical procedure involving the physical destruction of hardened masses like kidney stones,[1] bezoars[2] or gallstones. The term is derived from the Greek words meaning "breaking (or pulverizing) stones" (litho- + τρίψω [tripso]).

Lithotripsy
ICD-9-CM98
MeSHD008096
MedlinePlus007113

Uses

Lithotripy is a procedure involving the physical destruction of hardened masses like kidney stones,[1] bezoars[2] or gallstones.

Contraindications

Techniques

  • Extracorporeal shock wave therapy[3]
  • Intracorporeal (endoscopic lithotripsy):
    • Laser lithotripsy : effective for larger stones (> 2 cm) with good stone-free and complication rates.[4]
    • Electrohydraulic lithotripsy
    • Mechanical lithotripsy
    • Ultrasonic lithotripsy : safer for small stones (<10 mm)

History

Surgery was the only method to remove stones too large to pass until French surgeon and urologist Jean Civiale in 1832, invented a surgical instrument (the lithotrite) to crush stones inside the bladder without having to open the abdomen. To remove a calculus, Civiale inserted his instrument through the urethra and bored holes in the stone. Afterwards, he crushed it with the same instrument and aspirated the resulting fragments or let them flow normally with urine.

Lithotripsy replaced lithotrites as the most common treatment beginning in the mid-1980s. In ESWL, external shockwaves are focused at the stone to pulverize it.[5] Ureteroscopic methods use a rigid or flexible scope to reach the stone and direct mechanical or light energy is applied. Endoscopy can use lasers, as well as various modes of energy delivery: ultrasound, electrohydraulic, and lasers.

ESWL was first used on kidney stones in 1980, and is also applied to gallstones and pancreatic stones. External shockwaves are focused and pulverize the stone which is located by imaging. The first shockwave lithotriptor approved for human use was the Dornier HM3 (human model 3) derived from a device used for testing aerospace parts. Second generation devices used piezoelectric or electromagnetic generators. American Urological Association guidelines consider ESWL a potential primary treatment for stones between 4 mm and 2 cm.[5]

Electrohydraulic lithotripsy is an industrial technique for fragmenting rocks by using electrodes to create shockwaves that was applied to bile duct stones in 1975. It can damage tissue and is mostly used in biliary tract specialty centers. Pneumatic mechanical devices have been used with endoscopes, commonly for large and hard stones.[6]

Laser lithotripsy was introduced in the 1980s. Pulsed dye lasers emit 504 nm (cyan colored) light that is delivered to the stone by optical fibers through a scope. Holmium:YAG lasers were developed more recently and produce smaller fragments.

gollark: See, much simpler.
gollark: =tex \frac{\left( x-2\right)\cdot-1}{6}\cdot\left( x-3\right)\cdot\left( x-4\right)+2\cdot\left( x-1\right)\cdot\left( x-3\right)\cdot\left( x-4\right)+\frac{\left( x-1\right)\cdot-9}{2}\cdot\left( x-2\right)\cdot\left( x-4\right)+\frac{\left( x-1\right)\cdot8}{3}\cdot\left( x-2\right)\cdot\left( x-3\right)
gollark: Er, expressions.
gollark: Hmm, it may have dropped a bit, I think I accidentally put in two of the equations.
gollark: =tex 1\cdot\frac{ x-2}{-1}\cdot\frac{ x-3}{-2}\cdot\frac{ x-4}{-3}+4\cdot\frac{ x-1}{1}\cdot\frac{ x-3}{-1}\cdot\frac{ x-4}{-2}+9\cdot\frac{ x-1}{2}\cdot\frac{ x-2}{1}\cdot\frac{ x-4}{-1}+16\cdot\frac{ x-1}{3}\cdot\frac{ x-2}{2}\cdot\frac{ x-3}{1}simpletex \frac{\left( x-2\right)\cdot-1}{6}\cdot\left( x-3\right)\cdot\left( x-4\right)+2\cdot\left( x-1\right)\cdot\left( x-3\right)\cdot\left( x-4\right)+\frac{\left( x-1\right)\cdot-9}{2}\cdot\left( x-2\right)\cdot\left( x-4\right)+\frac{\left( x-1\right)\cdot8}{3}\cdot\left( x-2\right)\cdot\left( x-3\right)

References

  1. "Lithotripsy". A.D.A.M. Medical Encyclopedia. Medline Plus. Bethesda, MD, U.S.A.: United States National Library of Medicine. September 16, 2011. OCLC 244795383. Archived from the original on July 27, 2011. Retrieved October 28, 2012. Lithotripsy is a medical procedure that uses shock waves to break up stones in the kidney, bladder, or ureter (tube that carries urine from your kidneys to your bladder).
  2. Hayashi, Kazuki; Ohara, Hirotaka; Naitoh, Itaru; Okumura, Fumihiro; Andoh, Tomoaki; Itoh, Takafumi; Nakazawa, Takahiro; Joh, Takashi (November 12, 2008). "Persimmon bezoar successfully treated by oral intake of Coca-Cola: a case report". Cases Journal. 1 (1): 385. doi:10.1186/1757-1626-1-385. PMC 2627813. PMID 19077219. There have been reports on the methods for treating bezoars, including surgical treatment, endoscopic lithotripsy, electrohydraulic lithotripsy, laser therapy, and even the use of extracorporeal shock wave lithotripsy (ESWL).
  3. Srisubat, A; Potisat1, S; Lojanapiwat, B; Setthawong, V; Laopaiboon, M (24 November 2014). "Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) or retrograde intrarenal surgery (RIRS) for kidney stones". The Cochrane Library. 11: CD007044. doi:10.1002/14651858.CD007044.pub3. PMID 25418417.
  4. Aboumarzouk OM, Monga M, Kata SG, Traxer O, Somani BK (Oct 2012). "Flexible ureteroscopy and laser lithotripsy for stones >2 cm: a systematic review and meta-analysis". J Endourol. 26: 1257–63. doi:10.1089/end.2012.0217. PMID 22642568.CS1 maint: multiple names: authors list (link)
  5. "Extracorporeal Shock Wave Lithotripsy (ESWL) for Kidney Stones". WebMD. Retrieved 2017-01-14.
  6. Rebuck, David A.; Macejko, Amanda; Bhalani, Vishal; Ramos, Patrick; Nadler, Robert B. (2011). "The Natural History of Renal Stone Fragments Following Ureteroscopy". Urology. 77 (3): 564–8. doi:10.1016/j.urology.2010.06.056. PMID 21109293.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.