Kepler-35

Kepler-35 is a binary star system in the constellation of Cygnus. These stars, called Kepler-35A and Kepler-35B have masses of 89% and 81% solar masses respectively, and both are assumed to be of spectral class G. They are separated by 0.176 AU, and complete an eccentric orbit around a common center of mass every 20.73 days.[4]

Kepler-35
Observation data
Epoch J2000      Equinox J2000
Constellation Cygnus
Right ascension  19h 37m 59.2726s[1]
Declination +46° 41 22.952[1]
Characteristics
Spectral type G / G[2]
Variable type Algol[3]
Astrometry
Proper motion (μ) RA: −2.279±0.058[1] mas/yr
Dec.: −8.262±0.070[1] mas/yr
Parallax (π)0.5215 ± 0.0336[1] mas
Distance6,300 ± 400 ly
(1,900 ± 100 pc)
Orbit[3]
Period (P)20.73 d
Semi-major axis (a)0.176 au
Eccentricity (e)0.16
Inclination (i)89.44°
Details[4]
Kepler-35A
Mass0.8877 M
Radius1.0284 R
Luminosity0.94 L
Surface gravity (log g)4.3623 cgs
Temperature5,606 K
Metallicity-0.13
Kepler-35B
Mass0.8094 M
Radius0.7861 R
Luminosity0.41 L
Surface gravity (log g)4.5556 cgs
Temperature5,202 K
Metallicity-0.13
Age8-12 Myr
Other designations
KOI-2937, KIC 9837578, 2MASS J19375927+4641231
Database references
SIMBADdata
KICdata

Description

The Kepler-35 system consists of two stars slightly less massive than the sun in a 21-day orbit aligned edge-on to us so that the stars eclipse each other. The orbit has a semi-major axis 0.2 au and a mild eccentricity of 0.16. of The precise measurements made by the Kepler satellite allow doppler beaming to be detected, as well as brightness variations due to the ellipsoidal shape of the stars and reflections of one star on the other.[4]

The primary star has a mass of 0.9 M and a radius fractionally larger than the sun. With an effective temperature of 5,606 K, its luminosity is 0.94 L. The secondary star has a mass of 0.8 M, a radius of 0.8 R, an effective surface temperature of 5,202 K, and a bolometric luminosity of 0.4 L.[4]

Planetary system

Kepler-35b is a gas giant that orbits the two stars in the Kepler-35 system. The planet is over an eighth of Jupiter's mass and has a radius of 0.728 Jupiter radii. The planet completes a somewhat eccentric orbit every 131.458 days from a semimajor axis of just over 0.6 AU, only about 3.5 times the semi-major axis between the parent stars. The proximity and eccentricity of the binary star as well as both stars have similar masses results the planet's orbit to significantly deviate from Keplerian orbit.[5] Studies have suggested that this planet must have been formed outside its current orbit and migrated inwards later.[6]

The Kepler-35 planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 0.127 MJ 0.60347 131.458 0.042 90.760° 0.728 RJ
gollark: I would rate lottery-fun lower. There's no challenge, intellectual effort, or whatever, it's just anticipation and random luck.
gollark: That just sounds particularly cost-ineffective then.
gollark: If you spent all your entertainment money on expensive things you won't get much use out of, total fun is lower.
gollark: Not everyone likes computer games, but there are for most people likely to be better ways to have fun than lotteries.
gollark: Well, I pick good ones.

See also

References

  1. Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  2. Jean Schneider (2012). "Notes for star Kepler-35(AB)". Extrasolar Planets Encyclopaedia. Retrieved 7 April 2012.
  3. . Bibcode:2011AJ....141...78C. Cite journal requires |journal= (help); Missing or empty |title= (help)
  4. Welsh, William F.; et al. (2012). "Transiting circumbinary planets Kepler-34 b and Kepler-35 b". Nature. 481 (7382): 475–479. arXiv:1204.3955. Bibcode:2012Natur.481..475W. doi:10.1038/nature10768. PMID 22237021.
  5. Leung, Gene C. K.; Hoi Lee, Man (2013). "AN ANALYTIC THEORY FOR THE ORBITS OF CIRCUMBINARY PLANETS". The Astrophysical Journal. 763: 107. doi:10.1088/0004-637X/763/2/107.
  6. Paardekooper, Sijme-Jan; Leinhardt, Zoë M.; Thébault, Philippe; Baruteau, Clément (2012). "HOW NOT TO BUILD TATOOINE: THE DIFFICULTY OF IN SITU FORMATION OF CIRCUMBINARY PLANETS KEPLER 16b, KEPLER 34b, AND KEPLER 35b". The Astrophysical Journal. 754: L16. arXiv:1206.3484. doi:10.1088/2041-8205/754/1/L16.

Further reading

. Bibcode:2018AstL...44..119D. Cite journal requires |journal= (help); Missing or empty |title= (help)

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.