Interpreter pattern
In computer programming, the interpreter pattern is a design pattern that specifies how to evaluate sentences in a language. The basic idea is to have a class for each symbol (terminal or nonterminal) in a specialized computer language. The syntax tree of a sentence in the language is an instance of the composite pattern and is used to evaluate (interpret) the sentence for a client.[1]:243 See also Composite pattern.
Overview
The Interpreter [2] design pattern is one of the twenty-three well-known GoF design patterns that describe how to solve recurring design problems to design flexible and reusable object-oriented software, that is, objects that are easier to implement, change, test, and reuse.
What problems can the Interpreter design pattern solve? [3]
- A grammar for a simple language should be defined
- so that sentences in the language can be interpreted.
When a problem occurs very often, it could be considered to represent it as a sentence in a simple language (Domain Specific Languages) so that an interpreter can solve the problem by interpreting the sentence.
For example, when many different or complex search expressions must be specified. Implementing (hard-wiring) them directly into a class is inflexible because it commits the class to particular expressions and makes it impossible to specify new expressions or change existing ones independently from (without having to change) the class.
What solution does the Interpreter design pattern describe?
- Define a grammar for a simple language by defining an
Expression
class hierarchy and implementing aninterpret()
operation. - Represent a sentence in the language by an abstract syntax tree (AST) made up of
Expression
instances. - Interpret a sentence by calling
interpret()
on the AST.
The expression objects are composed recursively into a composite/tree structure that is called
abstract syntax tree (see Composite pattern).
The Interpreter pattern doesn't describe how
to build an abstract syntax tree. This can
be done either manually by a client or automatically by a parser.
See also the UML class and object diagram below.
Uses
- Specialized database query languages such as SQL.
- Specialized computer languages that are often used to describe communication protocols.
- Most general-purpose computer languages actually incorporate several specialized languages.
Structure
UML class and object diagram
In the above UML class diagram, the Client
class refers to the common AbstractExpression
interface for interpreting an expression
interpret(context)
.
The TerminalExpression
class has no children and interprets an expression directly.
The NonTerminalExpression
class maintains a container of child expressions
(expressions
) and forwards interpret requests
to these expressions
.
The object collaboration diagram
shows the run-time interactions: The Client
object sends an interpret request to the abstract syntax tree.
The request is forwarded to (performed on) all objects downwards the tree structure.
The NonTerminalExpression
objects (ntExpr1,ntExpr2
) forward the request to their child expressions.
The TerminalExpression
objects (tExpr1,tExpr2,…
) perform the interpretation directly.
UML class diagram
Example
BNF
The following Backus–Naur form example illustrates the interpreter pattern. The grammar
expression ::= plus | minus | variable | number
plus ::= expression expression '+'
minus ::= expression expression '-'
variable ::= 'a' | 'b' | 'c' | ... | 'z'
digit = '0' | '1' | ... | '9'
number ::= digit | digit number
defines a language that contains Reverse Polish Notation expressions like:
a b + a b c + - a b + c a - -
C#
This structural code demonstrates the Interpreter patterns, which using a defined grammar, provides the interpreter that processes parsed statements.
namespace DesignPatterns.Interpreter
{
// "Context"
class Context
{
}
// "AbstractExpression"
abstract class AbstractExpression
{
public abstract void Interpret(Context context);
}
// "TerminalExpression"
class TerminalExpression : AbstractExpression
{
public override void Interpret(Context context)
{
Console.WriteLine("Called Terminal.Interpret()");
}
}
// "NonterminalExpression"
class NonterminalExpression : AbstractExpression
{
public override void Interpret(Context context)
{
Console.WriteLine("Called Nonterminal.Interpret()");
}
}
class MainApp
{
static void Main()
{
var context = new Context();
// Usually a tree
var list = new List<AbstractExpression>();
// Populate 'abstract syntax tree'
list.Add(new TerminalExpression());
list.Add(new NonterminalExpression());
list.Add(new TerminalExpression());
list.Add(new TerminalExpression());
// Interpret
foreach (AbstractExpression exp in list)
{
exp.Interpret(context);
}
}
}
}
Java
Following the interpreter pattern, we need to implement the interface Expr with a lambda (it can be a class) for each grammar rule.
public class Interpreter {
@FunctionalInterface
public interface Expr {
int interpret(Map<String, Integer> context);
static Expr number(int number) {
return context -> number;
}
static Expr plus(Expr left, Expr right) {
return context -> left.interpret(context) + right.interpret(context);
}
static Expr minus(Expr left, Expr right) {
return context -> left.interpret(context) - right.interpret(context);
}
static Expr variable(String name) {
return context -> context.getOrDefault(name, 0);
}
}
While the interpreter pattern does not address parsing[1]:247 a parser is provided for completeness.
private static Expr parseToken(String token, ArrayDeque<Expr> stack) {
Expr left, right;
switch(token) {
case "+":
// It's necessary to remove first the right operand from the stack
right = stack.pop();
// ...and then the left one
left = stack.pop();
return Expr.plus(left, right);
case "-":
right = stack.pop();
left = stack.pop();
return Expr.minus(left, right);
default:
return Expr.variable(token);
}
}
public static Expr parse(String expression) {
ArrayDeque<Expr> stack = new ArrayDeque<Expr>();
for (String token : expression.split(" ")) {
stack.push(parseToken(token, stack));
}
return stack.pop();
}
Finally evaluating the expression "w x z - +" with w = 5, x = 10, and z = 42.
public static void main(final String[] args) {
Expr expr = parse("w x z - +");
Map<String, Integer> context = Map.of("w", 5, "x", 10, "z", 42);
int result = expr.interpret(context);
System.out.println(result); // -27
}
}
PHP (Example 1)
/**
* AbstractExpression
*/
interface Expression
{
public function interpret(array $context): int;
}
/**
* TerminalExpression
*/
class TerminalExpression implements Expression
{
/** @var string */
private $name;
public function __construct(string $name)
{
$this->name = $name;
}
public function interpret(array $context): int
{
return intval($context[$this->name]);
}
}
/**
* NonTerminalExpression
*/
abstract class NonTerminalExpression implements Expression
{
/** @var Expression $left */
protected $left;
/** @var ?Expression $right */
protected $right;
public function __construct(Expression $left, ?Expression $right)
{
$this->left = $left;
$this->right = $right;
}
abstract public function interpret(array $context): int;
public function getRight()
{
return $this->right;
}
public function setRight($right): void
{
$this->right = $right;
}
}
/**
* NonTerminalExpression - PlusExpression
*/
class PlusExpression extends NonTerminalExpression
{
public function interpret(array $context): int
{
return intval($this->left->interpret($context) + $this->right->interpret($context));
}
}
/**
* NonTerminalExpression - MinusExpression
*/
class MinusExpression extends NonTerminalExpression
{
public function interpret(array $context): int
{
return intval($this->left->interpret($context) - $this->right->interpret($context));
}
}
/**
* Client
*/
class InterpreterClient
{
protected function parseList(array &$stack, array $list, int &$index)
{
/** @var string $token */
$token = $list[$index];
switch($token) {
case '-':
list($left, $right) = $this->fetchArguments($stack, $list, $index);
return new MinusExpression($left, $right);
case '+':
list($left, $right) = $this->fetchArguments($stack, $list, $index);
return new PlusExpression($left, $right);
default:
return new TerminalExpression($token);
}
}
protected function fetchArguments(array &$stack, array $list, int &$index): array
{
/** @var Expression $left */
$left = array_pop($stack);
/** @var Expression $right */
$right = array_pop($stack);
if ($right === null) {
++$index;
$this->parseListAndPush($stack, $list, $index);
$right = array_pop($stack);
}
return array($left, $right);
}
protected function parseListAndPush(array &$stack, array $list, int &$index)
{
array_push($stack, $this->parseList($stack, $list, $index));
}
protected function parse(string $data): Expression
{
$stack = [];
$list = explode(' ', $data);
for ($index=0; $index<count($list); $index++) {
$this->parseListAndPush($stack, $list, $index);
}
return array_pop($stack);
}
public function main()
{
$data = "u + v - w + z";
$expr = $this->parse($data);
$context = ['u' => 3, 'v' => 7, 'w' => 35, 'z' => 9];
$res = $expr->interpret($context);
echo "result: $res" . PHP_EOL;
}
}
// test.php
function loadClass($className)
{
require_once __DIR__ . "/$className.php";
}
spl_autoload_register('loadClass');
(new InterpreterClient())->main();
//result: -16
PHP (Example 2)
based on the example above with another realization of the Client
/**
* Client
*/
class InterpreterClient
{
public function parseToken(string $token, array &$stack): Expression
{
switch($token) {
case '-':
/** @var Expression $left */
$left = array_pop($stack);
/** @var Expression $right */
$right = array_pop($stack);
return new MinusExpression($left, $right);
case '+':
/** @var Expression $left */
$left = array_pop($stack);
/** @var Expression $right */
$right = array_pop($stack);
return new PlusExpression($left, $right);
default:
return new TerminalExpression($token);
}
}
public function parse(string $data): Expression
{
$unfinishedData = null;
$stack = [];
$list = explode(' ', $data);
foreach ($list as $token) {
$data = $this->parseToken($token, $stack);
if (
($unfinishedData instanceof NonTerminalExpression) &&
($data instanceof TerminalExpression)
) {
$unfinishedData->setRight($data);
array_push($stack, $unfinishedData);
$unfinishedData = null;
continue;
}
if ($data instanceof NonTerminalExpression) {
if ($data->getRight() === null) {
$unfinishedData = $data;
continue;
}
}
array_push($stack, $data);
}
return array_pop($stack);
}
public function main()
{
$data = "u + v - w + z";
$expr = $this->parse($data);
$context = ['u' => 3, 'v' => 7, 'w' => 35, 'z' => 9];
$res = $expr->interpret($context);
echo "result: $res" . PHP_EOL;
}
}
See also
References
- Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John (1994). Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley. ISBN 0-201-63361-2.
- Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides (1994). Design Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley. pp. 243ff. ISBN 0-201-63361-2.CS1 maint: multiple names: authors list (link)
- "The Interpreter design pattern - Problem, Solution, and Applicability". w3sDesign.com. Retrieved 2017-08-12.
- "The Interpreter design pattern - Structure and Collaboration". w3sDesign.com. Retrieved 2017-08-12.
External links
The Wikibook Computer Science Design Patterns has a page on the topic of: Interpreterimplementations in various languages |