Immunodeficiency

Immunodeficiency or immunocompromise is a state in which the immune system's ability to fight infectious disease and cancer is compromised or entirely absent. Most cases of immunodeficiency are acquired ("secondary") due to extrinsic factors that affect the patient's immune system. Examples of these extrinsic factors include HIV infection and environmental factors, such as nutrition.[1] In the clinical setting, the immunosuppression by some drugs, such as steroids, can be either an adverse effect or the intended purpose of the treatment. Examples of such use is in organ transplant surgery as an anti-rejection measure and in patients suffering from an overactive immune system, as in autoimmune diseases. Some people are born with intrinsic defects in their immune system, or primary immunodeficiency. A person who has an immunodeficiency of any kind is said to be immunocompromised. An immunocompromised person may be particularly vulnerable to opportunistic infections, in addition to normal infections that could affect everyone.[2] Immunodeficiency also decreases cancer immunosurveillance, in which the immune system scans the body's cells and kills neoplastic ones.

Immune deficiency
Other namesImmune deficiency
SpecialtyImmunology

Types

By affected component

In reality, immunodeficiency often affects multiple components, with notable examples including severe combined immunodeficiency (which is primary) and acquired immune deficiency syndrome (which is secondary).

Comparison of immunodeficiencies by affected component
Affected componentsMain causes[5]Main pathogens of resultant infections[5]
Humoral immune deficiency

B cell deficiency

B cells, plasma cells or antibodies
T cell deficiency T cells Intracellular pathogens, including Herpes simplex virus, Mycobacterium, Listeria,[6] and intracellular fungal infections.[5]
Neutropenia Neutrophil granulocytes
Asplenia Spleen
Complement deficiency Complement system
  • Congenital deficiencies

Primary or secondary

Distinction between primary versus secondary immunodeficiencies are based on, respectively, whether the cause originates in the immune system itself or is, in turn, due to insufficiency of a supporting component of it or an external decreasing factor of it.

Primary immunodeficiency

A number of rare diseases feature a heightened susceptibility to infections from childhood onward. Primary Immunodeficiency is also known as congenital immunodeficiencies.[8] Many of these disorders are hereditary and are autosomal recessive or X-linked. There are over 95 recognised primary immunodeficiency syndromes; they are generally grouped by the part of the immune system that is malfunctioning, such as lymphocytes or granulocytes.[9]

The treatment of primary immunodeficiencies depends on the nature of the defect, and may involve antibody infusions, long-term antibiotics and (in some cases) stem cell transplantation. The characteristics of lacking and/or impaired antibody functions can be related to illnesses such as X-Linked Agammaglobulinemia and Common Variable Immune Deficiency [10]

Secondary immunodeficiencies

Secondary immunodeficiencies, also known as acquired immunodeficiencies, can result from various immunosuppressive agents, for example, malnutrition, aging, particular medications (e.g., chemotherapy, disease-modifying antirheumatic drugs, immunosuppressive drugs after organ transplants, glucocorticoids) and environmental toxins like mercury and other heavy metals, pesticides and petrochemicals like styrene, dichlorobenzene, xylene, and ethylphenol. For medications, the term immunosuppression generally refers to both beneficial and potential adverse effects of decreasing the function of the immune system, while the term immunodeficiency generally refers solely to the adverse effect of increased risk for infection.

Many specific diseases directly or indirectly cause immunosuppression. This includes many types of cancer, particularly those of the bone marrow and blood cells (leukemia, lymphoma, multiple myeloma), and certain chronic infections. Immunodeficiency is also the hallmark of acquired immunodeficiency syndrome (AIDS),[8] caused by the human immunodeficiency virus (HIV). HIV directly infects a small number of T helper cells, and also impairs other immune system responses indirectly.

Various hormonal and metabolic disorders can also result in immune deficiency including anemia, hypothyroidism and hyperglycemia.

Smoking, alcoholism and drug abuse also depress immune response.

Immunodeficiency and autoimmunity

There are a large number of immunodeficiency syndromes that present clinical and laboratory characteristics of autoimmunity. The decreased ability of the immune system to clear infections in these patients may be responsible for causing autoimmunity through perpetual immune system activation.[11]

One example is common variable immunodeficiency (CVID) where multiple autoimmune diseases are seen, e.g., inflammatory bowel disease, autoimmune thrombocytopenia, and autoimmune thyroid disease. Familial hemophagocytic lymphohistiocytosis, an autosomal recessive primary immunodeficiency, is another example. Low blood levels of red blood cells, white blood cells, and platelets, rashes, lymph node enlargement, and enlargement of the liver and spleen are commonly seen in these patients. Presence of multiple uncleared viral infections due to lack of perforin are thought to be responsible. In addition to chronic and/or recurrent infections many autoimmune diseases including arthritis, autoimmune hemolytic anemia, scleroderma and type 1 diabetes are also seen in X-linked agammaglobulinemia (XLA). Recurrent bacterial and fungal infections and chronic inflammation of the gut and lungs are seen in chronic granulomatous disease (CGD) as well. CGD is caused by a decreased production of [nicotinamide adenine dinucleotide phosphate]] (NADPH) oxidase by neutrophils. Hypomorphic RAG mutations are seen in patients with midline granulomatous disease; an autoimmune disorder that is commonly seen in patients with granulomatosis with polyangiitis and NK/T cell lymphomas. Wiskott–Aldrich syndrome (WAS) patients also present with eczema, autoimmune manifestations, recurrent bacterial infections and lymphoma. In autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) also autoimmunity and infections coexist: organ-specific autoimmune manifestations (e.g., hypoparathyroidism and adrenocortical failure) and chronic mucocutaneous candidiasis. Finally, IgA deficiency is also sometimes associated with the development of autoimmune and atopic phenomena.

Causes

The cause of immunodeficiency varies depending on the nature of the disorder. The cause can be either genetic or acquired by malnutrition and poor sanitary conditions. Only for some genetic causes, the exact genes are known.[12]

Treatment

Available treatment falls into two modalities: treating infections and boosting the immune system.

Prevention of Pneumocystis pneumonia using trimethoprim/sulfamethoxazole is useful in those who are immunocompromised.[13] In the early 1950s Immunoglobulin(Ig) was used by doctors to treat patients with primary immunodeficiency through intramuscular injection. Ig replacement therapy are infusions that can be either subcutaneous or intravenously administrated, resulting in higher Ig levels for about three to four weeks, although this varies with each patient.[10]

Prognosis

Prognosis depends greatly on the nature and severity of the condition. Some deficiencies cause early mortality (before age one), others with or even without treatment are lifelong conditions that cause little mortality or morbidity. Newer stem cell transplant technologies may lead to gene based treatments of debilitating and fatal genetic immune deficiencies. Prognosis of acquired immune deficiencies depends on avoiding or treating the causative agent or condition (like AIDS).

gollark: Square-based pyramids, it seems, not triangles.
gollark: You can use it for crafting and stuff.
gollark: It's fake endstone.
gollark: The worst internet connection currently available is 10bps over low-clocked digital redstone.
gollark: I'm impressed that they get 34/8 out of it.

See also

References

  1. Chinen J, Shearer WT (February 2010). "Secondary immunodeficiencies, including HIV infection". The Journal of Allergy and Clinical Immunology. 125 (2 Suppl 2): S195–203. doi:10.1016/j.jaci.2009.08.040. PMC 6151868. PMID 20042227.
  2. Meidani, Mohsen; Naeini, Alireza Emami; Rostami, Mojtaba; Sherkat, Roya; Tayeri, Katayoun (March 2014). "Immunocompromised patients: Review of the most common infections happened in 446 hospitalized patients". Journal of Research in Medical Sciences. 19 (Suppl 1): S71–S73. ISSN 1735-1995. PMC 4078380. PMID 25002900.
  3. Greenberg S. "Immunodeficiency". University of Toronto. Archived from the original on 10 July 2013.
  4. Schwartz RA (2019-10-22). Jyonouchi H (ed.). "T-cell Disorders". Medscape.
  5. If not otherwise specified in boxes, then reference for entries is: Page 432, Chapter 22, Table 22.1 in: Jones J, Bannister BA, Gillespie SH (2006). Infection: Microbiology and Management. Wiley-Blackwell. ISBN 978-1-4051-2665-6.
  6. Page 435 in: Jones J, Bannister BA, Gillespie SH (2006). Infection: Microbiology and Management. Wiley-Blackwell. ISBN 978-1-4051-2665-6.
  7. Brigden ML (February 2001). "Detection, education and management of the asplenic or hyposplenic patient". American Family Physician. 63 (3): 499–506, 508. PMID 11272299.
  8. Basic Immunology: Functions and Disorders of the Immune System, 3rd Ed. 2011.
  9. Rosen FS, Cooper MD, Wedgwood RJ (August 1995). "The primary immunodeficiencies". The New England Journal of Medicine. 333 (7): 431–40. doi:10.1056/NEJM199508173330707. PMID 7616993.
  10. "Immune Deficiency Foundation". primaryimmune.org. Retrieved 2017-04-17.
  11. Grammatikos AP, Tsokos GC (February 2012). "Immunodeficiency and autoimmunity: lessons from systemic lupus erythematosus". Trends in Molecular Medicine. 18 (2): 101–8. doi:10.1016/j.molmed.2011.10.005. PMC 3278563. PMID 22177735.
  12. Immunobiology: The Immune System in Health and Disease. 5th edition., figure 11.8
  13. Stern A, Green H, Paul M, Vidal L, Leibovici L (October 2014). "Prophylaxis for Pneumocystis pneumonia (PCP) in non-HIV immunocompromised patients". The Cochrane Database of Systematic Reviews. 10 (10): CD005590. doi:10.1002/14651858.CD005590.pub3. PMC 6457644. PMID 25269391.
Classification
External resources
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.