List of planar symmetry groups

This article summarizes the classes of discrete symmetry groups of the Euclidean plane. The symmetry groups are named here by three naming schemes: International notation, orbifold notation, and Coxeter notation. There are three kinds of symmetry groups of the plane:

Rosette groups

There are two families of discrete two-dimensional point groups, and they are specified with parameter n, which is the order of the group of the rotations in the group.

Family Intl
(orbifold)
Schön. Geo [1]
Coxeter
Order Examples
Cyclic symmetry n
(n•)
Cn n
[n]+
n
C1, [ ]+ (•)

C2, [2]+ (2•)

C3, [3]+ (3•)

C4, [4]+ (4•)

C5, [5]+ (5•)

C6, [6]+ (6•)
Dihedral symmetry nm
(*n•)
Dn n
[n]
2n
D1, [ ] (*•)

D2, [2] (*2•)

D3, [3] (*3•)

D4, [4] (*4•)

D5, [5] (*5•)

D6, [6] (*6•)

Frieze groups

The 7 frieze groups, the two-dimensional line groups, with a direction of periodicity are given with five notational names. The Schönflies notation is given as infinite limits of 7 dihedral groups. The yellow regions represent the infinite fundamental domain in each.

[1,∞],
IUC
(orbifold)
Geo Schönflies Coxeter Fundamental
domain
Example
p1
(∞•)
p1C[1,∞]+

hop
p1m1
(*∞•)
p1C∞v[1,∞]

sidle
[2,∞+],
IUC
(orbifold)
Geo Schönflies Coxeter Fundamental
domain
Example
p11g
(∞×)
p.g1S2∞[2+,∞+]

step
p11m
(∞*)
p. 1C∞h[2,∞+]

jump
[2,∞],
IUC
(orbifold)
Geo Schönflies Coxeter Fundamental
domain
Example
p2
(22∞)
p2D[2,∞]+

spinning hop
p2mg
(2*∞)
p2gD∞d[2+,∞]

spinning sidle
p2mm
(*22∞)
p2D∞h[2,∞]

spinning jump

Wallpaper groups

The 17 wallpaper groups, with finite fundamental domains, are given by International notation, orbifold notation, and Coxeter notation, classified by the 5 Bravais lattices in the plane: square, oblique (parallelogrammatic), hexagonal (equilateral triangular), rectangular (centered rhombic), and rhombic (centered rectangular).

The p1 and p2 groups, with no reflectional symmetry, are repeated in all classes. The related pure reflectional Coxeter group are given with all classes except oblique.

Square
[4,4],
IUC
(Orb.)
Geo
Coxeter Fundamental
domain
p1
(°)
p1
p2
(2222)
p2
[4,1+,4]+

[1+,4,4,1+]+
pgg
(22×)
pg2g
[4+,4+]
pmm
(*2222)
p2
[4,1+,4]

[1+,4,4,1+]
cmm
(2*22)
c2
[(4,4,2+)]
p4
(442)
p4
[4,4]+
p4g
(4*2)
pg4
[4+,4]
p4m
(*442)
p4
[4,4]
Rectangular
[∞h,2,∞v],
IUC
(Orb.)
Geo
Coxeter Fundamental
domain
p1
(°)
p1
[∞+,2,∞+]
p2
(2222)
p2
[∞,2,∞]+
pg(h)
(××)
pg1
h: [∞+,(2,∞)+]
pg(v)
(××)
pg1
v: [(∞,2)+,∞+]
pgm
(22*)
pg2
h: [(∞,2)+,∞]
pmg
(22*)
pg2
v: [∞,(2,∞)+]
pm(h)
(**)
p1
h: [∞+,2,∞]
pm(v)
(**)
p1
v: [∞,2,∞+]
pmm
(*2222)
p2
[∞,2,∞]
Rhombic
[∞h,2+,∞v],
IUC
(Orb.)
Geo
Coxeter Fundamental
domain
p1
(°)
p1
[∞+,2+,∞+]
p2
(2222)
p2
[∞,2+,∞]+
cm(h)
(*×)
c1
h: [∞+,2+,∞]
cm(v)
(*×)
c1
v: [∞,2+,∞+]
pgg
(22×)
pg2g
[((∞,2)+)[2]]
cmm
(2*22)
c2
[∞,2+,∞]
Parallelogrammatic (oblique)
p1
(°)
p1
p2
(2222)
p2
Hexagonal/Triangular
[6,3], / [3[3]],
p1
(°)
p1
p2
(2222)
p2
[6,3]Δ
cmm
(2*22)
c2
[6,3]
p3
(333)
p3
[1+,6,3+]

[3[3]]+
p3m1
(*333)
p3
[1+,6,3]

[3[3]]
p31m
(3*3)
h3
[6,3+]
p6
(632)
p6
[6,3]+
p6m
(*632)
p6
[6,3]

Wallpaper subgroup relationships

Subgroup relationships among the 17 wallpaper group[2]
o2222××**22×22**22222*224424*2*442333*3333*3632*632
p1p2pgpmcmpggpmgpmmcmmp4p4gp4mp3p3m1p31mp6p6m
op1 2
2222p2 222
××pg 22
**pm 2222
cm 2223
22×pgg 4223
22*pmg 4222423
*2222pmm 424244222
2*22cmm 424422224
442p4 422
4*2p4g 84484244229
*442p4m 848444422222
333p3 33
*333p3m1 6663243
3*3p31m 6663234
632p6 6324
*632p6m 12612126666342223
gollark: Interesting...
gollark: The graph would just be a representation of the structure of your notes.
gollark: How would *that* make sense?
gollark: Minoteaur™ may in fact integrate prometheus metrics tracking certain interesting variables in order to something something graphs.
gollark: Graph editing? No idea. Graph visualization I have a bunch of stuff on *somewhere*.

See also

Notes

  1. The Crystallographic Space groups in Geometric algebra, D. Hestenes and J. Holt, Journal of Mathematical Physics. 48, 023514 (2007) (22 pages) PDF
  2. Coxeter, (1980), The 17 plane groups, Table 4

References

  • The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 (Orbifold notation for polyhedra, Euclidean and hyperbolic tilings)
  • On Quaternions and Octonions, 2003, John Horton Conway and Derek A. Smith ISBN 978-1-56881-134-5
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
  • Coxeter, H. S. M. & Moser, W. O. J. (1980). Generators and Relations for Discrete Groups. New York: Springer-Verlag. ISBN 0-387-09212-9.
  • N.W. Johnson: Geometries and Transformations, (2018) ISBN 978-1-107-10340-5 Chapter 12: Euclidean Symmetry Groups
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.