Order (group theory)
In group theory, a branch of mathematics, the order of a group is its cardinality, that is, the number of elements in its set. The order of an element a of a group, sometimes also called the period length or period of a, is the smallest positive integer m such that am = e, where e denotes the identity element of the group, and am denotes the product of m copies of a. If no such m exists, a is said to have infinite order.
Algebraic structure → Group theory Group theory |
---|
|
Infinite dimensional Lie group
|
The order of a group G is denoted by ord(G) or |G|, and the order of an element a is denoted by ord(a) or |a|. The order of an element a is equal to the order of its cyclic subgroup ⟨a⟩ = {ak for k an integer}, the subgroup generated by a. Thus, |a| = |⟨a⟩|.
Lagrange's theorem states that for any subgroup H of G, the order of the subgroup divides the order of the group: |H| is a divisor of |G|. In particular, the order |a| of any element is a divisor of |G|.
Example
The symmetric group S3 has the following multiplication table.
• e s t u v w e e s t u v w s s e v w t u t t u e s w v u u t w v e s v v w s e u t w w v u t s e
This group has six elements, so ord(S3) = 6. By definition, the order of the identity, e, is one, since e 1 = e. Each of s, t, and w squares to e, so these group elements have order two: |s| = |t| = |w| = 2. Finally, u and v have order 3, since u3 = vu = e, and v3 = uv = e.
Order and structure
The order of a group G and the orders of its elements give much information about the structure of the group. Roughly speaking, the more complicated the factorization of |G|, the more complicated the structure of G.
For |G| = 1, the group is trivial. In any group, only the identity element a = e has ord(a) = 1. If every non-identity element in G is equal to its inverse (so that a2 = e), then ord(a) = 2; this implies G is abelian since . The converse is not true; for example, the (additive) cyclic group Z6 of integers modulo 6 is abelian, but the number 2 has order 3:
- .
The relationship between the two concepts of order is the following: if we write
for the subgroup generated by a, then
For any integer k, we have
- ak = e if and only if ord(a) divides k.
In general, the order of any subgroup of G divides the order of G. More precisely: if H is a subgroup of G, then
- ord(G) / ord(H) = [G : H], where [G : H] is called the index of H in G, an integer. This is Lagrange's theorem. (This is, however, only true when G has finite order. If ord(G) = ∞, the quotient ord(G) / ord(H) does not make sense.)
As an immediate consequence of the above, we see that the order of every element of a group divides the order of the group. For example, in the symmetric group shown above, where ord(S3) = 6, the orders of the elements are 1, 2, or 3.
The following partial converse is true for finite groups: if d divides the order of a group G and d is a prime number, then there exists an element of order d in G (this is sometimes called Cauchy's theorem). The statement does not hold for composite orders, e.g. the Klein four-group does not have an element of order four). This can be shown by inductive proof.[1] The consequences of the theorem include: the order of a group G is a power of a prime p if and only if ord(a) is some power of p for every a in G.[2]
If a has infinite order, then all powers of a have infinite order as well. If a has finite order, we have the following formula for the order of the powers of a:
for every integer k. In particular, a and its inverse a−1 have the same order.
In any group,
There is no general formula relating the order of a product ab to the orders of a and b. In fact, it is possible that both a and b have finite order while ab has infinite order, or that both a and b have infinite order while ab has finite order. An example of the former is a(x) = 2−x, b(x) = 1−x with ab(x) = x−1 in the group . An example of the latter is a(x) = x+1, b(x) = x−1 with ab(x) = x. If ab = ba, we can at least say that ord(ab) divides lcm(ord(a), ord(b)). As a consequence, one can prove that in a finite abelian group, if m denotes the maximum of all the orders of the group's elements, then every element's order divides m.
Counting by order of elements
Suppose G is a finite group of order n, and d is a divisor of n. The number of order-d-elements in G is a multiple of φ(d) (possibly zero), where φ is Euler's totient function, giving the number of positive integers no larger than d and coprime to it. For example, in the case of S3, φ(3) = 2, and we have exactly two elements of order 3. The theorem provides no useful information about elements of order 2, because φ(2) = 1, and is only of limited utility for composite d such as d=6, since φ(6)=2, and there are zero elements of order 6 in S3.
In relation to homomorphisms
Group homomorphisms tend to reduce the orders of elements: if f: G → H is a homomorphism, and a is an element of G of finite order, then ord(f(a)) divides ord(a). If f is injective, then ord(f(a)) = ord(a). This can often be used to prove that there are no (injective) homomorphisms between two concretely given groups. (For example, there can be no nontrivial homomorphism h: S3 → Z5, because every number except zero in Z5 has order 5, which does not divide the orders 1, 2, and 3 of elements in S3.) A further consequence is that conjugate elements have the same order.
Class equation
An important result about orders is the class equation; it relates the order of a finite group G to the order of its center Z(G) and the sizes of its non-trivial conjugacy classes:
where the di are the sizes of the non-trivial conjugacy classes; these are proper divisors of |G| bigger than one, and they are also equal to the indices of the centralizers in G of the representatives of the non-trivial conjugacy classes. For example, the center of S3 is just the trivial group with the single element e, and the equation reads |S3| = 1+2+3.
Notes
- Conrad, Keith. "Proof of Cauchy's Theorem" (PDF). Retrieved May 14, 2011. Cite journal requires
|journal=
(help) - Conrad, Keith. "Consequences of Cauchy's Theorem" (PDF). Retrieved May 14, 2011. Cite journal requires
|journal=
(help) - Dummit, David; Foote, Richard. Abstract Algebra, ISBN 978-0471433347, pp. 57
References
- Dummit, David; Foote, Richard. Abstract Algebra, ISBN 978-0471433347, pp. 20, 54–59, 90
- Artin, Michael. Algebra, ISBN 0-13-004763-5, pp. 46–47