Carbon hexoxide

Carbon hexoxide or carbon hexaoxide is an oxide of carbon with an unusually large quantity of oxygen.[1] The molecule has been produced and studied at cryogenic temperatures. The molecule is important in atmospheric chemistry and in the study of cold ices in the outer solar system and interstellar space.[2] The substance could form and be present on Ganymede or Triton, moons in the outer solar system. The molecule consists of a six membered ring with five oxygen and one carbon atom, and one oxygen with a double bond with the carbon.[1]

Carbon hexoxide
Identifiers
3D model (JSmol)
Properties
CO6
Molar mass 108.005 g·mol−1
Related compounds
Related compounds
Carbon pentoxide
Carbon tetroxide
Carbon hexasulfide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Shape

The molecule that has been observed has a Cs symmetry. The ring is not a flat hexagon but puckered with slightly different side lengths and angles (120°) from the regular hexagon. Going around the ring starting at the carbon to oxygen bond the interatomic distances are CO: 1.362 Å OO 1.491 Å, OO 1.391 Å, OO 1.391 Å, OO 1.491 Å, and OC 1.362 Å. The angles between the bonds are: OCO 120.4 °, COO 115.7°, OOO 105.9°, and the opposite from carbon OOO 104.1°. For the double carbon to oxygen bond, the length is 1.185 Å and the angle from the single bonds is 119.6°.[1]

Formation

In an experiment, carbon hexoxide was formed by irradiating solid carbon dioxide with electrons at an energy of 5000 V at 10 K in a vacuum. The reaction proceeds by breaking atomic oxygen from carbon dioxide:

CO2 CO + O

The atomic oxygen then reacts with carbon dioxide to form carbon trioxide, and similar reactions occur to generate the series of ring oxides carbon tetroxide and carbon pentoxide, ultimately leading to the formation of carbon hexoxide[1] in an exothermic reaction.[2]

CO2 + O O2CO
O2CO + O O3CO
O3CO + O O4CO
O4CO + O O5CO ΔH = 145.2 kJ mol−1[2]

Properties

Carbon hexoxide is stable up to 60 K.[1] Vibrational infrared wavenumbers include the most prominent ν1 = 1876 cm−1 for the most common isotopologue 12C16O6.[1]

Other isomers

Other possible isomers of carbon hexoxide are the C2 form with a five and three membered ring, and the D2d with two four membered rings. The D2d O3CO3 isomer has a calculated CO bond length of 1.391 Å, and an OO length of 1.469 Å. The OCO bond angle is 94.1°. However these two isomers have not been observed.[2]

The equivalent carbon hexasulfide is also known from inert gas matrix study. It has C2 symmetry with the same atomic arrangement as the hexoxide.[3]

gollark: Sounds TJ09.
gollark: Ndology maybe.
gollark: Hmm? I'm interested in this NDology stuff.
gollark: Wait what?
gollark: Coast is hard.

References

  1. Jamieson, Corey S.; Alexander M. Mebel; Ralf I. Kaiser (2008). "First detection of the Cs symmetric isomer of carbon hexaoxide (CO6) at 10 K". Chemical Physics Letters. 450 (4–6): 312–317. Bibcode:2008CPL...450..312J. doi:10.1016/j.cplett.2007.11.052. ISSN 0009-2614.
  2. Kaiser, Ralf I.; Alexander M. Mebel (2008). "On the formation of higher carbon oxides in extreme environments". Chemical Physics Letters. 465 (1–3): 1–9. Bibcode:2008CPL...465....1K. doi:10.1016/j.cplett.2008.07.076. ISSN 0009-2614.
  3. Maity, Surajit; Kim, Y.S.; Kaiser, Ralf I.; Lin, Hong Mao; Sun, Bian Jian; Chang, A.H.H. (July 2013). "On the detection of higher order carbon sulfides (CSx; x = 4–6) in low temperature carbon disulfide ices". Chemical Physics Letters. 577: 42–47. Bibcode:2013CPL...577...42M. doi:10.1016/j.cplett.2013.05.039.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.