Aequornithes

Aequornithes (from Latin aequor, expanse of water + Greek ornithes, birds), or core water birds[1] are defined as "the least inclusive clade containing Gaviidae and Phalacrocoracidae".[2]

Aequornithes
Temporal range: Late Cretaceous (Possible stem-loons date to this epoch) to present 70–present Ma
Shy albatross (Thalassarche cauta)
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Class: Aves
Clade: Ardeae
Clade: Aequornithes
Mayr, 2010
Clades

The monophyly of the group is currently supported by several molecular phylogenetic studies.[3][4][5][6]

Aequornithes includes the clades Gaviiformes, Sphenisciformes, Procellariiformes, Ciconiiformes, Suliformes and Pelecaniformes. It does not include several unrelated groups of aquatic birds such as flamingos and grebes (Mirandornithes), shorebirds and auks (Charadriiformes), or the Anseriformes.

Based on a whole-genome analysis of the bird orders, the kagu and sunbittern (Eurypygiformes) and the three species of tropicbirds (Phaethontiformes) together styled as the Eurypygimorphae are the closest sister group of the Aequornithes in the clade Ardeae.[1]

Aequornithes

Gaviiformes (loons)

Austrodyptornithes

Procellariiformes (albatross and petrels)

Sphenisciformes (penguins)

Ciconiiformes (storks)

Suliformes (boobies, cormorants, etc.)

Pelecaniformes

Pelecanidae (pelicans)

Balaeniceps rex (shoebill)

Scopus umbretta (hamerkop)

Threskiornithidae (ibises and spoonbills)

Ardeidae (herons and egrets)

Cladogram based on Burleigh, J.G. et al. (2015)[7]

References

  1. Jarvis, E.D.; et al. (12 December 2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds". Science. 346 (6215): 1320–1331. Bibcode:2014Sci...346.1320J. doi:10.1126/science.1253451. PMC 4405904. PMID 25504713.
  2. Mayr, G. (February 2011). "Metaves, Mirandornithes, Strisores and other novelties – a critical review of the higher-level phylogeny of neornithine birds". J Zool Syst Evol Res. 49 (1): 58–76. doi:10.1111/j.1439-0469.2010.00586.x.
  3. Hackett, S.J.; et al. (27 June 2008). "A Phylogenomic Study of Birds Reveals Their Evolutionary History". Science. 320 (5884): 1763–1768. Bibcode:2008Sci...320.1763H. doi:10.1126/science.1157704. PMID 18583609.
  4. Yuri, T.; et al. (2013). "Parsimony and model-based analyses of indels in avian nuclear genes reveal congruent and incongruent phylogenetic signals". Biology. 2 (1): 419–444. doi:10.3390/biology2010419. PMC 4009869. PMID 24832669.
  5. Kimball, R.T.; et al. (December 2013). "Identifying localized biases in large datasets: A case study using the Avian Tree of Life". Mol Phylogenet Evol. 69 (3): 1021–32. doi:10.1016/j.ympev.2013.05.029. PMID 23791948.
  6. Kuramoto, T.; et al. (2015). "Determining the Position of Storks on the Phylogenetic Tree of Waterbirds by Retroposon Insertion Analysis" (PDF). Genome Biology and Evolution. 7 (12): 3180–3189. doi:10.1093/gbe/evv213. PMC 4700946. PMID 26527652.
  7. Burleigh, J.G.; et al. (March 2015). "Building the avian tree of life using a large-scale, sparse supermatrix". Molecular Phylogenetics and Evolution. 84: 53–63. doi:10.1016/j.ympev.2014.12.003. PMID 25550149.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.