100,000,000
100,000,000 (one hundred million) is the natural number following 99,999,999 and preceding 100,000,001.
100000000 | |
---|---|
Cardinal | One hundred million |
Ordinal | 100000000th (one hundred millionth) |
Factorization | 28 × 58 |
Greek numeral | |
Roman numeral | C |
Binary | 1011111010111100001000000002 |
Ternary | 202220111120122013 |
Quaternary | 113311320100004 |
Quinary | 2011000000005 |
Senary | 135312025446 |
Octal | 5753604008 |
Duodecimal | 295A645412 |
Hexadecimal | 5F5E10016 |
Vigesimal | 1B5000020 |
Base 36 | 1NJCHS36 |
In scientific notation, it is written as 108.
East Asian languages treat 100,000,000 as a counting unit, significant as the square of a myriad, also a counting unit. In Chinese, Korean, and Japanese respectively it is (simplified Chinese: 亿; traditional Chinese: 億; pinyin: yì) (or Chinese: 萬萬; pinyin: wànwàn in ancient texts), eok (억/億) and oku (億). These languages do not have single words for a thousand to the second, third, fifth power, etc.
Selected 9-digit numbers (100,000,001–999,999,999)
100,000,001 to 199,999,999
- 100,000,007 – smallest nine digit prime[1]
- 100,005,153 – smallest triangular number with 9 digits and the 14,142nd triangular number
- 102,334,155 – Fibonacci number
- 105,413,504 – 147
- 107,890,609 – Wedderburn-Etherington number[2]
- 111,111,111 – repunit, square root of 12345678987654321
- 111,111,113 – Chen prime, Sophie Germain prime, cousin prime.
- 123,456,789 – smallest zeroless base 10 pandigital number
- 129,140,163 – 317
- 129,644,790 – Catalan number[3]
- 134,217,728 – 227
- 139,854,276 – the smallest pandigital square
- 142,547,559 – Motzkin number[4]
- 165,580,141 – Fibonacci number
- 167,444,795 – cyclic number in base 6
- 170,859,375 – 157
- 179,424,673 – 10,000,000th prime number
- 190,899,322 – Bell number[5]
200,000,000 to 299,999,999
- 212,890,625 – 1-automorphic number[6]
- 214,358,881 – 118
- 222,222,222 – repdigit
- 222,222,227 – safe prime
- 223,092,870 – the product of the first nine prime numbers
- 225,058,681 – Pell number[7]
- 225,331,713 – self-descriptive number in base 9
- 232,792,560 – superior highly composite number;[8] colossally abundant number;[9] the smallest number divisible by all the numbers 1 through 22
- 244,140,625 – 512
- 253,450,711 – Wedderburn-Etherington number[2]
- 267,914,296 – Fibonacci number
- 268,402,687 – Carol number[10]
- 268,435,456 – 228
- 268,468,223 – Kynea number[11]
- 272,400,600 – the number of terms of the harmonic series required to pass 20
- 275,305,224 – the number of magic squares of order 5, excluding rotations and reflections
- 282,475,249 – 710
300,000,000 to 399,999,999
- 333,333,333 – repdigit
- 367,567,200 – colossally abundant number,[12] superior highly composite number[13]
- 381,654,729 – the only polydivisible number that is also a zeroless pandigital number
- 387,420,489 – 318, 99 and in tetration notation 29
400,000,000 to 499,999,999
- 400,763,223 – Motzkin number[4]
- 410,338,673 – 177
- 429,981,696 – 128
- 433,494,437 – Fibonacci prime
- 442,386,619 – alternating factorial[14]
- 444,444,444 – repdigit
- 477,638,700 – Catalan number[3]
- 479,001,599 – factorial prime[15]
- 479,001,600 – 12!
500,000,000 to 599,999,999
- 536,870,912 – 229
- 543,339,720 – Pell number[7]
- 554,999,445 – a Kaprekar constant for digit length 9 in base 10
- 555,555,555 – repdigit
- 596,572,387 – Wedderburn-Etherington number[2]
600,000,000 to 699,999,999
- 612,220,032 – 187
- 666,666,666 – repdigit
- 644,972,544 – perfect cube, 3-smooth number
700,000,000 to 799,999,999
- 701,408,733 – Fibonacci number
- 715,827,883 – Wagstaff prime[16]
- 777,777,777 – repdigit
- 787,109,376– 1-automorphic number[6]
800,000,000 to 899,999,999
- 815,730,721 – 138
- 888,888,888 – repdigit
- 893,871,739 – 197
900,000,000 to 999,999,999
- 906,150,257 – smallest counterexample to the Polya conjecture
- 987,654,321 – largest zeroless pandigital number
- 999,961,560 – highest triangular number with 9 digits and the 44,720th triangular number
- 999,999,937 – largest 9-digit prime
- 999,999,999 – repdigit
gollark: If you're going to ban me at least do it for things I actually did.
gollark: Solarflame switched from accusing ale to accusing me for no reason.
gollark: ↑ didn't do it
gollark: It's not as if they work as very effective behavior adjustment if you just say "I don't know, something".
gollark: What am I actually banned for, though?
References
- Sloane, N. J. A. (ed.). "Sequence A003617 (Smallest n-digit prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 7 September 2017.
- Sloane, N. J. A. (ed.). "Sequence A001190 (Wedderburn-Etherington numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- Sloane, N. J. A. (ed.). "Sequence A000108 (Catalan numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- Sloane, N. J. A. (ed.). "Sequence A001006 (Motzkin numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- "Sloane's A000110 : Bell or exponential numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-04-06.
- Sloane, N. J. A. (ed.). "Sequence A000129 (Pell numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- "Sloane's A093112 : a(n) = (2^n-1)^2 - 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- "Sloane's A093069 : a(n) = (2^n + 1)^2 - 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- "Sloane's A005165 : Alternating factorials". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- "Sloane's A088054 : Factorial primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- "Sloane's A000979 : Wagstaff primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.