2018 in archosaur paleontology

The year 2018 in archosaur paleontology was eventful. Archosaurs include the only living dinosaur group — birds — and the reptile crocodilians, plus all extinct dinosaurs, extinct crocodilian relatives, and pterosaurs. Archosaur palaeontology is the scientific study of those animals, especially as they existed before the Holocene Epoch began about 11,700 years ago. The year 2018 in paleontology included various significant developments regarding archosaurs.

List of years in archosaur paleontology
In paleontology
2015
2016
2017
2018
2019
2020
2021
In science
2015
2016
2017
2018
2019
2020
2021

This article records new taxa of fossil archosaurs of every kind that have been described during the year 2018, as well as other significant discoveries and events related to paleontology of archosaurs that occurred in the year 2018.

General research

Pseudosuchians

Research

  • A study on the jaw musculature and biomechanics of Venaticosuchus rusconii based on rediscovered cranial materials is published by Von Baczko (2018).[13]
  • Three differently sized braincases diagnosable as belonging to Parringtonia gracilis are described from the Triassic Manda Beds of Tanzania by Nesbitt et al. (2018).[14]
  • A study on the histology of osteoderms of Late Triassic aetosaurs from South America, including Aetosauroides scagliai, Aetobarbakinoides brasiliensis and Neoaetosauroides engaeus, is published by Cerda, Desojo & Scheyer (2018).[15]
  • Description of new skull material of Aetosauroides scagliai from the Santa Maria Supersequence (Brazil) and a study on the phylogenetic relationships of this species is published by Biacchi Brust et al. (2018).[16]
  • The first known natural endocast of an aetosaur (Neoaetosauroides engaeus) is described by von Baczko, Taborda & Desojo (2018).[17]
  • Redescription of the aetosaur species Calyptosuchus wellesi is published by Parker (2018).[18]
  • A study on the anatomy of the skeleton of Coahomasuchus chathamensis and on the phylogenetic relationships of aetosaurs is published by Hoffman, Heckert & Zanno (2018).[19]
  • A restudy of the referred material of Stagonolepis robertsoni housed at the Natural History Museum, London, evaluating the utility of this material for examining the phylogenetic relationships of S. robertsoni, is published by Parker (2018).[20]
  • Description of the forelimbs of Stagonolepis olenkae and a study on the probable use of the forelimbs by members of this species is published by Dróżdż (2018).[21]
  • New information on the bonebed from the Triassic Badong Formation in Sangzhi County (Hunan, China) preserving the majority of the known fossil material of Lotosaurus adentus is published by Hagen et al. (2018), who also reassess the provenance and age of the deposit.[22]
  • A study on the anatomy of the best-preserved skeleton of Prestosuchus chiniquensis, as well as on the phylogenetic relationships of this species, is published online by Roberto-Da-Silva et al. (2018).[23]
  • A study on the anatomy of the backbone of Poposaurus langstoni is published by Stefanic & Nesbitt (2018).[24]
  • A study on the morphology of the secondary palate in shartegosuchids, based on data from a new specimen of Shartegosuchus from the Ulan Malgait Formation (Mongolia), is published by Dollman et al. (2018).[25]
  • Description of the braincase and the brain endocast, vasculature, inner ear, and paratympanic pneumatic cavities of Steneosaurus bollensis and Cricosaurus araucanensis is published by Herrera, Leardi & Fernández (2018).[26]
  • A skull of a member of the genus Tyrannoneustes is described from the Middle Jurassic (Callovian) of Germany by Waskow, Grzegorczyk & Sander (2018).[27]
  • New specimen of Neuquensuchus universitas, providing new information on the skeletal anatomy of members of the species, is described from the Upper Cretaceous (Santonian) Bajo de la Carpa Formation (Argentina) by Lio et al. (2018).[28]
  • A redescription of the anatomy of the skull of Notosuchus terrestris is published by Barrios et al. (2018).[29]
  • A study on the anatomy of the skull of Morrinhosuchus luziae is published by Iori et al. (2018).[30]
  • A study on the anatomic structures and tooth wear related to mastication in Caipirasuchus is published by Iori & Carvalho (2018).[31]
  • A study on the taphonomy of the baurusuchid specimens (as well as non-avian theropods and titanosaur sauropod dinosaurs) from the Upper Cretaceous Bauru Group (Brazil) is published by Bandeira et al. (2018), who argue that low diversity of known theropods in the Bauru Group might be caused by preservational biases, and does not conclusively indicate that baurusuchids outcompeted theropods as top predators in this area.[32]
  • A study on the evolution of the skull morphology of baurusuchids is published by Godoy et al. (2018).[33]
  • New baurusuchid fossils are described from the Upper Cretaceous (Santonian) Bajo de la Carpa Formation (Argentina) by Leardi, Pol & Gasparini (2018).[34]
  • A study on the bone microanatomy of Pepesuchus deiseae is published by Sena et al. (2018).[35]
  • Neosuchian crocodylomorph fossils are described from the Bathonian Peski locality in the Moscow Region (Russia) by Pashchenko et al. (2018), who note the similarity of Bathonian vertebrate faunas of the Moscow Region, United Kingdom, Western Siberia and Kyrgyzstan, which they interpret as indicative of faunal homogeneity on the territory of Laurasia.[36]
  • New fossil remains of Sarcosuchus are described from the Aptian-Albian deposits of the Tataouine Basin (Tunisia) by Dridi (2018).[37]
  • A revision of Trematochampsa taqueti and all fossil material assigned to the species is published by Meunier & Larsson (2018).[38]
  • Description of pelvic and femoral remains of allodaposuchids from the Upper Cretaceous of the Lo Hueco fossil site (Spain) is published by de Celis, Narváez & Ortega (2018).[39]
  • Fossils of a eusuchian crocodyliform are described from the Lower Cretaceous (Aptian) Khok Kruat Formation (Thailand) by Kubo et al. (2018), representing the oldest record of Asian eusuchians reported so far.[40]
  • Description of a new skull of Susisuchus anatoceps from the Lower Cretaceous Crato Formation (Brazil), providing new information on the anatomy of this species, and a study on the phylogenetic relationships of Susisuchus is published by Leite & Fortier (2018).[41]
  • A study on the taphonomic history of the holotype, paratypes and referred specimens of Isisfordia duncani is published by Syme & Salisbury (2018).[42]
  • A study on the phylogenetic relationships of Thoracosaurus, Eothoracosaurus, Eosuchus, Eogavialis and Argochampsa, evaluating whether they were closely related to the gharial, is published by Lee & Yates (2018).[43]
  • A study on the length proportion of limb elements in extant and fossil alligatoroid and crocodyloid crocodylians, as well as on the correlation of limb morphology and skull shape in these groups, is published by Iijima, Kubo & Kobayashi (2018).[44]
  • New specimen of Bottosaurus harlani is described from the Rowan Fossil Quarry, a Cretaceous–Paleogene locality in Mantua Township (New Jersey, United States) by Cossette & Brochu (2018).[45]
  • A reassessment of the anatomy and phylogenetic relationships of Asiatosuchus nanlingensis and Eoalligator chunyii is published by Wu, Li & Wang (2018), who reinstate the latter taxon as a species distinct from the former one.[46]
  • Redescription of the holotype specimen of Mourasuchus arendsi from the Urumaco Formation of Venezuela is published online by Cidade et al. (2018).[47]
  • A study on the ontogenetic changes of the skull shape in extant caimans and its implications for the validity of the Miocene species Melanosuchus fisheri is published by Foth et al. (2018).[48]
  • A study on the histology of long bones of extant yacare caiman and fossil caimans from the Upper Miocene–Pliocene Solimões Formation (Brazil) is published online by Andrade et al. (2018).[49]
  • A study on two fossil specimens of caimans from the late Pleistocene and early Holocene of Brazil, attempting to assign the fossils’ identity to one of the extant caiman species on the basis of records of their current distribution and paleoclimatic data, is published by Eduardo et al. (2018).[50]
  • A fragment of a mandible of a member of the genus Gryposuchus is described from the Miocene (≈18 Ma) Castillo Formation (Venezuela) by Solórzano, Núñez-Flores & Rincón (2018), representing the earliest record of the genus in South America reported so far.[51]
  • A revision of the type species of the genus Gryposuchus, G. jessei, is published by Souza et al. (2018).[52]
  • A revision of crocodilian fossils and taxa from the Calvert Cliffs (United States) is published by Weems (2018).[53]
  • Partial crocodylian skull from the Pleistocene of Taiwan, formerly regarded as lost during World War II, is rediscovered and redescribed by Ito et al. (2018), who assign this specimen to the genus Toyotamaphimeia.[54]
  • Fossils of large crocodylians, as well as tortoise fossils with feeding traces on them, are described from the Pleistocene of Aldabra (Seychelles) by Scheyer et al. (2018), who interpret their findings as indicating the occurrence of a predator–prey interaction between crocodylians and giant tortoises on Aldabra during the Late Pleistocene.[55]
  • Late Quaternary fossils representing a locally extinct population of the Cuban crocodile (Crocodylus rhombifer) are reported from two underwater caves in the Dominican Republic by Morgan et al. (2018).[56]
  • A new large and well-preserved specimen of Prestosuchus chiniquensis is published by Roberto-da-Silva et al. (2018).[57]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Aktiogavialis caribesi[58]

Sp. nov

Valid

Salas-Gismondi et al.

Late Miocene

Urumaco Formation

 Venezuela

Anteophthalmosuchus epikrator[59]

Sp. nov

Valid

Ristevski et al.

Early Cretaceous

Wessex Formation

 United Kingdom

A goniopholidid.

Barrosasuchus[60]

Gen. et sp. nov

Valid

Coria et al.

Late Cretaceous (Santonian)

Bajo de la Carpa Formation

 Argentina

A peirosaurid crocodyliform. Genus includes new species B. neuquenianus. Announced in 2018; the final version of the article naming it was published in 2019.

Caipirasuchus mineirus[61]

Sp. nov

Valid

Martinelli et al.

Late Cretaceous

Adamantina Formation

 Brazil

A sphagesaurid crocodyliform.

Dadagavialis[58]

Gen. et sp. nov

Valid

Salas-Gismondi et al.

Early Miocene

Cucaracha Formation

 Panama

A gryposuchine gavialoid. Genus includes new species D. gunai.

Jiangxisuchus[62]

Gen. et sp. nov

Valid

Li, Wu & Rufolo

Late Cretaceous (Maastrichtian)

Nanxiong Formation

 China

A member of Crocodyloidea. Genus includes new species J. nankangensis. Announced in 2018; the final version of the article naming it was published in 2019.

Kinesuchus[63]

Gen. et sp. nov

Valid

Filippi, Barrios & Garrido

Late Cretaceous (Santonian)

Bajo de la Carpa Formation

 Argentina

A peirosaurid crocodyliform. The type species is K. overoi.

Magyarosuchus[64]

Gen. et sp. nov

Valid

Ősi et al.

Early Jurassic (Toarcian)

Kisgerecse Marl Formation

 Hungary

A member of Metriorhynchoidea. The type species is M. fitosi.

Maledictosuchus nuyivijanan[65]

Sp. nov

Valid

Barrientos-Lara, Alvarado-Ortega & Fernández

Late Jurassic (Kimmeridgian)

Sabinal Formation

 Mexico

Mandasuchus[66]

Gen. et sp. nov

Valid

Butler et al.

Triassic

Manda Formation

 Tanzania

An early member of Paracrocodylomorpha belonging to the group Loricata. The type species is M. tanyauchen.

Pagosvenator[67]

Gen. et sp. nov

Valid

Lacerda, de França & Schultz

MiddleLate Triassic

Dinodontosaurus Assemblage Zone of the Santa Maria Supersequence

 Brazil

A member of the family Erpetosuchidae. Genus includes new species P. candelariensis.

Portugalosuchus[68]

Gen. et sp. nov

Valid

Mateus, Puértolas-Pascual & Callapez

Late Cretaceous (Cenomanian)

Tentugal Formation

 Portugal

A member of Eusuchia, possibly the oldest known member of Crocodilia. Genus includes new species P. azenhae.

Protocaiman[69]

Gen. et sp. nov

Valid

Bona et al.

Paleocene (Danian)

Salamanca Formation

 Argentina

A relative of caimans. Genus includes new species P. peligrensis.

Roxochampsa[70]

Gen. et comb. nov

Valid

Piacentini Pinheiro et al.

Late Cretaceous (late Campanian–early Maastrichtian)

Adamantina Formation
Presidente Prudente Formation

 Brazil

A crocodyliform belonging to the family Itasuchidae. The type species is "Goniopholis" paulistanus Roxo (1936).

Theriosuchus morrisonensis[71]

Sp. nov

Valid

Foster

Late Jurassic

Morrison Formation

 United States
( Wyoming)

A new species of the atoposaurid Theriosuchus and the first known from North America.

Wahasuchus[72]

Gen. et sp. nov

Valid

Saber et al.

Late Cretaceous (Campanian)

Quseir Formation

 Egypt

A member of Mesoeucrocodylia of uncertain phylogenetic placement, possibly a neosuchian. Genus includes new species W. egyptensis.

Non-avian dinosaurs

Research

  • A study intending to identify the evolutionary processes that drove the diversification of dinosaur body mass is published by Benson et al. (2018).[73]
  • A study on the impact of geography on the evolutionary radiation of dinosaurs is published by O’Donovan, Meade & Venditti (2018), who note increasing amounts of sympatric speciation as terrestrial space became a limiting factor.[74]
  • A study on the impact of publication history on the estimates of dinosaur diversity patterns through time is published by Tennant, Chiarenza & Baron (2018).[75]
  • A study evaluating the possible influence of cuirassal ventilation and a herbivorous diet on the orientation of the pubis of dinosaurs is published by Macaluso & Tschopp (2018).[76]
  • A study on embryos of extant reptiles and birds, aiming to determine the developmental mechanism underlying the acquisition of the dinosaur-type perforated acetabulum, is published by Egawa et al. (2018).[77]
  • A study on the nesting style and incubation heat source in non-avian dinosaurs as indicated by comparison with extant crocodylians and megapode birds is published by Tanaka et al. (2018).[78]
  • A study on pigment traces in fossilized dinosaur eggshells is published by Wiemann, Yang & Norell (2018), who interpret their findings as indicating that eggshell coloration and pigment pattern originated in nonavian theropod dinosaurs.[79][80][81]
  • A study on the nutritional value of plants grown under elevated CO2 levels, evaluating the hypothesis that constraints on sauropod diet quality were driven by Mesozoic CO2 concentration, is published by Gill et al. (2018).[82]
  • Studies evaluating the link between the Carnian Pluvial Event and the explosive diversification of dinosaurs in the early Late Triassic are published by Bernardi et al. (2018)[83] and Benton, Bernardi & Kinsella (2018).[84]
  • A study comparing non-avian dinosaur faunas of Appalachia and Laramidia from the Aptian to Maastrichtian stages of the Cretaceous period is published by Brownstein (2018), who also evaluates dinosaur provincialism and ecology on Appalachia.[85]
  • A study on the bone histology of sauropod dinosaurs and birds, looking for histological correlates indicative of the presence of bird-like air sacs, is published by Lambertz, Bertozzo & Sander (2018).[86]
  • A study on the Middle Jurassic flora from Yorkshire (United Kingdom) as indicated by pollen and spores, and on the possible dinosaur-plant interactions in the area is published by Slater et al. (2018).[87]
  • Description and analysis of insect borings on hadrosaur bones from the late Campanian Cerro del Pueblo Formation (Mexico) is published by Serrano-Brañas, Espinosa-Chávez & Maccracken (2018).[88]
  • A study on the sedimentological and ichnological contexts of Early Jurassic dinosaur tracks and trackways from the Ha Nohana palaeosurface located within the upper Elliot Formation (Lesotho), and on the locomotor dynamics and behaviour of the trackmaker dinosaurs, is published by Rampersadh et al. (2018).[89]
  • New Middle Jurassic dinosaur tracksite, preserving sauropod and theropod tracks, is described from the Lealt Shale Formation (Skye, Scotland, United Kingdom) by dePolo et al. (2018).[90]
  • Large theropod (possibly carcharodontosaurid) and ornithopod (basal hadrosauroid) tracks are described from the Lower Cretaceous Sanbukdong Formation (South Korea) by Lee et al. (2018).[91]
  • A unique association of hadrosaur and therizinosaur tracks is reported from the Late Cretaceous lower Cantwell Formation (Alaska, United States) by Fiorillo et al. (2018).[92]
  • Large theropod and small sauropod tracks are described from the Lower Cretaceous Jingchuan Formation (China) by Lockley et al. (2018), who name a new ichnotaxon Ordexallopus zhanglifui.[93]
  • A study on the small to medium-sized tridactyl theropod tracks from the Upper Jurassic of the Jura Mountains (Switzerland), focusing on the possible variations in footprint shape along trackways, is published by Castanera et al. (2018).[94]
  • Theropod tracks (probably produced by Acrocanthosaurus) are described from the Cretaceous (Albian) De Queen Formation (Arkansas, United States) by Platt et al. (2018).[95]
  • First Cretaceous track morphotype attributable to the non-avian theropod ichnogenus Gigandipus is reported from the Lower Cretaceous Jiaguan Formation (Guizhou, China) by Xing et al. (2018), who name a new ichnospecies Gigandipus chiappei.[96]
  • New dinosaur ootaxon Duovallumoolithus shangdanensis is described on the basis of fossil eggs from the Upper Cretaceous Lijiacun Formation (China) by Zheng et al. (2018).[97]
  • A study on dendroolithid eggs from the Upper Cretaceous Tumiaoling Hill locality (Gaogou Formation; Yunxian, Hubei Province, China) is published by Zhang et al. (2018), who transfer the oospecies "Dendroolithus" tumiaolingensis Zhou, Ren, Xu & Guan (1998) to the genus Placoolithus.[98]
  • Evidence of cuticle preservation on theropod eggshells from the Nanxiong Group in China and the Two Medicine Formation in Montana, United States is presented by Yang et al. (2018).[99]
  • Description of a femur of a young diplodocoid sauropod from the Carnegie Quarry (Upper Jurassic Morrison Formation) at Dinosaur National Monument (United States), showing extensive bite marks on the bone, and a study on the identity and feeding technique of the tracemaker is published by Hone & Chure (2018).[100]
  • A skull of a chasmosaurine ceratopsian, preserving bite traces made by a tyrannosaurid theropod, is described from the Campanian Kirtland Formation (New Mexico, United States) by Dalman & Lucas (2018).[101]
  • A study on the function of denticle shape variation in the teeth of coelurosaurs of various body shapes and sizes is published by Torices et al. (2018).[102]
  • New data on feather anatomy in theropod dinosaurs Sinosauropteryx, Caudipteryx and Anchiornis is presented by Saitta, Gelernter & Vinther (2018).[103]
  • Theropod tracksite discovered in the Maastrichtian Nemegt Formation (Mongolia), preserving tracks of least four different trackmakers, and associated with a distorted foot skeleton of Gallimimus, is described by Lee et al. (2018).[104]
  • Didactyl theropod tracks with similarities to footprints attributed to small deinonychosaurian theropods are described from the Middle Jurassic (Aalenian-Bajocian) Dansirit Formation (Iran) by Xing, Abbassi & Lockley (2018).[105]
  • Parallel trackways indicating a group of small didactyl bipeds of inferred deinonychosaurian affinity are described from the Lower Cretaceous Dasheng Group (China) by Xing et al. (2018).[106]
  • Didactyl tracks attributed to juvenile or diminutive dromaeosaurs are described from the Lower Cretaceous (Aptian) Jinju Formation (South Korea) by Kim et al. (2018), who name a new ichnotaxon Dromaeosauriformipes rarus.[107]
  • Bishop et al. (2018) present predictive equations that may be used to model non-avian theropod locomotion, developed on the basis of a study of extant ground-running birds.[108]
  • A three-part series of papers investigating the architecture of cancellous bone in the main hindlimb bones of theropod dinosaurs, and evaluating its implications for inferring locomotor biomechanics in extinct non-avian theropods, is published by Bishop et al. (2018).[109][110][111]
  • A study on the resource partitioning among theropod dinosaurs known from the mid-Cretaceous assemblages from Niger (Gadoufaoua) and Morocco (Kem Kem Beds) as indicated by calcium isotope values from tooth enamel is published by Hassler et al. (2018).[112]
  • A study on the early evolution of the theropod hands and wrists, especially on the transition from five- to four-fingered hands, as indicated by the anatomy of the hands of Coelophysis bauri and Megapnosaurus rhodesiensis is published by Barta, Nesbitt & Norell (2018).[113]
  • A study on the morphological changes that occurred during ontogeny in the postcranial skeleton of Coelophysis bauri and Megapnosaurus rhodesiensis is published by Griffin (2018).[114]
  • A study on the anatomy, phylogenetic relationships, paleobiology and biogeography of members of Ceratosauria is published by Delcourt (2018), who names a new clade Etrigansauria.[115]
  • A study on the pneumatization of a noasaurid vertebra recovered from the Upper Cretaceous Adamantina Formation (Brazil) is published by Brum et al. (2018).[116]
  • Two shed tooth crowns of an abelisaurid theropod are described from the Cenomanian Alcântara Formation by Sales, de Oliveira & Schultz (2018), representing the oldest abelisaurid occurrence from Brazil to date.[117]
  • Paulina-Carabajal & Filippi (2018) reconstruct the endocranial cavity enclosing the brain, cranial nerves, blood vessels and the labyrinth of the inner ear of the holotype specimen of Viavenator exxoni.[118]
  • Description of the osteology of Viavenator exxoni is published by Filippi et al. (2018).[119]
  • Fragmented theropod maxilla from the Upper Cretaceous Presidente Prudente Formation (Brazil), initially thought to be a carcharodontosaurid fossil, is interpreted as more likely to be an abelisaurid fossil by Delcourt & Grillo (2018).[120]
  • A vertebra of a large megalosaurid theropod, as well as large theropod footprints representing two morphotypes, are described from the Upper Jurassic (Kimmeridgian) of Asturias (Spain) by Rauhut et al. (2018).[121]
  • A study on the anatomy and histology of a partial spinosaurid tibia from the Lower Cretaceous Romualdo Formation (Brazil), possessing traits previously only observed in Spinosaurus aegyptiacus and correlated with semi-aquatic habits in many limbed vertebrates, is published by Aureliano et al. (2018).[122]
  • Spinosaurid fossils assigned to a form distinct from Baryonyx, Suchomimus and Sigilmassasaurus are described from the upper Barremian Arcillas de Morella Formation (Spain) by Malafaia et al. (2018).[123].
  • A nearly complete pedal ungual phalanx of an early juvenile specimen of Spinosaurus, representing the smallest known specimen assigned to this genus reported so far, is described from the Cretaceous Kem Kem Beds (Morocco) by Maganuco & Dal Sasso (2018).[124]
  • A study on the floating capabilities of Spinosaurus and other theropods is published by Henderson (2018), who argues that Spinosaurus was not highly specialized for a semi-aquatic mode of life.[125]
  • A study on the anatomy of the skull of Concavenator corcovatus is published by Cuesta et al. (2018).[126]
  • A study on the limb anatomy of Concavenator corcovatus is published by Cuesta, Ortega & Sanz (2018).[127]
  • A review of the fossil record of carcharodontosaurid theropods from the Cretaceous of North Africa, assessing its implications for understanding the distribution and ecological role of members of this group, is published by Candeiro et al. (2018).[128]
  • Description of theropod (including tyrannosauroid, ornithomimosaur and dromaeosaurid) specimens from the Ellisdale site of the Cretaceous Marshalltown Formation (New Jersey, United States) is published by Brownstein (2018).[129]
  • A study on the dietary and habitat preferences of theropod dinosaurs from the Upper Cretaceous Mussentuchit Member of the Cedar Mountain Formation of Utah is published by Frederickson, Engel & Cifelli (2018).[130]
  • Theropod fossils from the Lower Cretaceous (Albian) Santana Formation (Brazil), initially thought to be oviraptorosaur fossils, are reinterpreted as fossils of a member of Megaraptora by Aranciaga Rolando et al. (2018).[131]
  • A study on the phylogenetic relationships of Timimus hermani and Santanaraptor placidus is published by Delcourt & Grillo (2018), who interpret these taxa as tyrannosauroid theropods, and name new clades Pantyrannosauria and Eutyrannosauria.[132]
  • The first neurocranial and paleoneurological description of Dilong paradoxus, comparing it with large tyrannosaurids, is published online by Kundrát et al. (2018).[133]
  • A metatarsal bone of an indeterminate tyrannosauroid theropod, indicative of an animal in the size range of tyrannosauroids from the Santonian to Maastrichtian, is described from the Cenomanian Potomac Formation of New Jersey by Brownstein (2018), representing the only definite occurrence of a tyrannosauroid in Appalachia (eastern North America) before the Coniacian and Santonian.[134]
  • Three foot bones of large tyrannosauroid theropods, interpreted as fossils of non-tyrannosaurid tyrannosauroids, are described from the Maastrichtian Navesink Formation (New Jersey, United States) by Brownstein (2018).[135]
  • Partial tibia of a tyrannosauroid theropod, possibly a relative of Bistahieversor sealeyi, is described from the Upper Cretaceous (Maastrichtian) Navesink Formation (New Jersey, United States) by Brownstein (2018).[136]
  • A metatarsal bone of a young tyrannosaurid theropod, marked with several long grooves interpreted as tooth traces of a large tyrannosaurid, is described from the Upper Cretaceous (Maastrichtian) Lance Formation (Wyoming, United States) by McLain et al. (2018).[137]
  • A study on the jaw musculature of Tyrannosaurus rex, and its importance for reconstructions of the bite force of this species, is published by Bates & Falkingham (2018).[138]
  • A study on the ornithomimosaur fossils from the Lower Cretaceous Arundel Clay (Maryland, United States) published by Brownstein (2017), interpreting the fossils as indicative of the presence of two ornithomimosaur taxa in the Arundel,[139] is criticized by McFeeters, Ryan & Cullen (2018).[140][141][142]
  • A study on the diversity of ornithomimosaur dinosaurs from the Upper Cretaceous Nemegt Formation (Mongolia) as indicated by the morphology of their manus bones is published by Chinzorig et al. (2018).[143]
  • A study on the putative beta-keratin antibodies reported in a fossil specimen of Shuvuuia deserti by Schweitzer et al. (1999)[144] is published by Saitta et al. (2018), who interpret their findings as inconsistent with any protein or other original organic substance preservation in the Shuvuuia fiber.[145]
  • Probable therizinosauroid eggs are described from the Upper Cretaceous Hongtuya Formation (China) by Ren et al. (2018).[146]
  • A study on the anatomy of the basicranium of Nothronychus mckinleyi, and its implications for reconstructing the soft tissues of this species, is published by Smith, Sanders & Wolfe (2018).[147]
  • A study on egg clutches produced by oviraptorosaur theropods representing a large body size range, evaluating their implications for inferring how oviraptorosaurs of different body size incubated their eggs, is published by Tanaka et al. (2018).[148]
  • A study evaluating the potential of the wings of Caudipteryx to produce small aerodynamic forces during terrestrial locomotion is published by Talori et al. (2018).[149]
  • A study on the morphology of the dentary of a member of the genus Caenagnathasia from the Upper Cretaceous (Turonian) Bissekty Formation (Uzbekistan) is published by Wang, Zhang & Yang (2018).[150]
  • A small caenagnathid tibia is described from the Upper Cretaceous (Maastrichtian) Horseshoe Canyon Formation (Alberta, Canada) by Funston & Currie (2018).[151]
  • New specimen of Citipati osmolskae preserved in a brooding position atop a nest of eggs is described from Ukhaa Tolgod (Mongolia) by Norell et al. (2018).[152]
  • Description of endocasts of Citipati osmolskae and Khaan mckennai, and a study on their implications for inferring the course of oviraptorosaur brain evolution and how it relates to the origin of the modern bird brain, is published by Balanoff et al. (2018).[153]
  • Redescription of Hulsanpes perlei and a study on the phylogenetic relationships of this species is published by Cau & Madzia (2018).[154]
  • Description of the anatomy of the postcranial skeleton of a newly discovered specimen of Buitreraptor gonzalezorum is published by Novas et al. (2018).[155]
  • A study on the tail anatomy of Buitreraptor gonzalezorum is published by Motta, Brissón Egli & Novas (2018).[156]
  • Description of the anatomy of the postcranial skeleton of Buitreraptor gonzalezorum based on the holotype and referred specimens is published by Gianechini et al. (2018).[157]
  • A tooth of a large dromaeosaurid theropod, intermediate in size between those of smaller dromaeosaurids like Saurornitholestes and gigantic forms like Dakotaraptor, is described from the middle Campanian Tar Heel Formation (North Carolina, United States) by Brownstein (2018).[158]
  • New specimen of Sinovenator changii, including a nearly complete skull and providing new information on the anatomy of the skull of this species, is described from the Lower Cretaceous Yixian Formation (China) by Yin, Pei & Zhou (2018).[159]
  • A study on the incubation period and incubation strategy of Troodon formosus is published by Varricchio, Kundrát & Hogan (2018).[160]
  • Description of two new specimens of Anchiornis huxleyi and a study on the phylogenetic relationships of the species is published by Guo, Xu & Jia (2018).[161]
  • Apparent gastric pellets of Anchiornis are described by Zheng et al. (2018).[162]
  • A study on the evolution of the anatomy of the braincase of sauropodomorph dinosaurs is published by Bronzati, Benson & Rauhut (2018).[163]
  • Otero (2018) presents the inferred shoulder and forelimb musculature of sauropodomorph dinosaurs, as inferred by comparisons with living crocodiles and birds.[164]
  • A study evaluating how hindlimb musculature of sauropodomorph dinosaurs was affected by the development of a quadrupedal stance from a bipedal one, and later in the transition from a narrow‐gauge to a wide‐gauge stance, is published by Klinkhamer et al. (2018).[165]
  • New specimen of Buriolestes schultzi, providing additional information on the anatomy of this species, is described from the Upper Triassic Santa Maria Formation (Brazil) by Müller et al. (2018).[166]
  • Fossil of a basal sauropodomorph dinosaur (more similar to Norian forms such as Pantydraco caducus and Unaysaurus tolentinoi than to Carnian taxa such as Saturnalia tupiniquim and Pampadromaeus barberenai) found in the Triassic locality in Brazil which also yielded the fossils of Sacisaurus agudoensis are described by Marsola et al. (2018).[167]
  • Redescription of the anatomy of the braincase of Efraasia minor is published by Bronzati & Rauhut (2018).[168]
  • A study on the anatomy and phylogenetic relationships of Sarahsaurus aurifontanalis is published by Marsh & Rowe (2018).[169]
  • A study on the anatomy of the skull of Massospondylus carinatus is published by Chapelle & Choiniere (2018).[170]
  • Xing et al. (2018) describe a bone abnormality in a rib of a specimen of Lufengosaurus huenei from the Lower Jurassic Fengjiahe Formation (China), possibly caused by a failed predator attack.[171]
  • A study on the osteology of the sauropodomorph Pulanesaura eocollum is published by Mcphee & Choiniere (2018).[172]
  • A study on the microstructure of the long bones of Antetonitrus ingenipes is published by Krupandan, Chinsamy-Turan & Pol (2018).[173]
  • A study on the geological age of the type locality of Vulcanodon karibaensis is published by Viglietti et al. (2018), who interpret Vulcanodon as likely to be SinemurianPliensbachian in age, and potentially ∼10–15 million years older than previously thought. This makes it the oldest known sauropod.[174]
  • Two neck vertebrae of a eusauropod sauropod dinosaur are described from a new Early Jurassic locality in the Haute Moulouya Basin (Morocco) by Nicholl, Mannion & Barrett (2018), representing some of the earliest eusauropod fossils reported so far.[175]
  • A study on the phylogenetic relationships of basal members of Eusauropoda from the Early-Middle Jurasic of Patagonia, Argentina is published by Holwerda & Pol (2018).[176]
  • A study on the age of the Lower Shaximiao Formation of the Sichuan Basin, southwest China (preserving abundant sauropod fossils, including the Shunosaurus-Omeisaurus fauna) is published by Wang et al. (2018).[177]
  • Redescription of the complete series of the neck vertebrae of Xinjiangtitan shanshanesis is published online by Zhang et al. (2018).[178]
  • A study on the skull anatomy of Bellusaurus sui is published by Moore et al. (2018).[179]
  • Description of a skull of a juvenile sauropod belonging or related to the genus Diplodocus from the Upper Jurassic Morrison Formation (Montana, United States), representing the smallest diplodocid skull reported so far, and a study on the implications of this finding for inferring the ontogeny of the skull of diplodocids, is published by Woodruff et al. (2018).[180]
  • Exquisitely preserved new skull of a diplodocid sauropod is described from the Upper Jurassic Morrison Formation (Wyoming, United States) by Tschopp, Mateus & Norell (2018), providing new information on the morphology of diplodocid skulls, and indicating presence of overlapping joints between the maxilla, jugal, quadratojugal and the lacrimal, permitting limited anterior sliding movement of the snout.[181]
  • Xenoposeidon proneneukos is assigned to the family Rebbachisauridae by Taylor (2018).[182]
  • Partial sauropod (probably brachiosaurid) pes is described from the Upper Jurassic Morrison Formation in the Black Hills in Wyoming (United States) by Maltese et al. (2018), representing the largest sauropod pes described to date.[183]
  • A sauropod footprint assigned to the ichnogenus Brontopodus, produced by a trackmaker of the size exceeding that of any Mongolian dinosaur reported so far from skeletal material, is described from the Upper Cretaceous Nemegt Formation (Mongolia) by Stettner, Persons & Currie (2018).[184]
  • A study on sauropod tracks from the Cal Orck’o tracksite in the Maastrichtian El Molino Formation (Bolivia) is published by Meyer, Marty & Belvedere (2018), who name a new ichnotaxon Calorckosauripus lazari, interpreted by the authors as tracks produced by a basal titanosaur.[185]
  • A study on the bone histology of Rapetosaurus krausei is published by Curry Rogers & Kulik (2018).[186]
  • New titanosaur fossil material is described from the Upper Cretaceous Río Huaco Formation and Los Llanos Formation (La Rioja Province, Argentina) by Hechenleitner et al. (2018).[187]
  • A study on the mechanical strength of the unusually thick shells of the titanosaur eggs from the Sanagasta nesting site (La Rioja, Argentina), evaluating the required force to break them from inside, is published by Hechenleitner et al. (2018), who interpret their findings as indicating that thinning of outer eggshells was necessary for successful hatchings.[188]
  • Description of new fossil material of Atsinganosaurus velauciensis from the Upper Cretaceous Argiles et Grès à Reptiles Formation (France) and a study on the phylogenetic relationships of this species is published by Díez Díaz et al. (2018).[189]
  • Ibiricu, Martínez & Casal (2018) present the reconstruction of the pelvic and hindlimb musculature of Epachthosaurus sciuttoi.[190]
  • A redescription of Mendozasaurus neguyelap based on previously undocumented remains and a study on the phylogenetic relationships of the species is published by Gonzàlez Riga et al. (2018).[191]
  • Postcranial remains attributable to the holotype specimen of Nemegtosaurus mongoliensis are described from the Upper Cretaceous Nemegt Formation (Mongolia) by Currie et al. (2018), who consider Opisthocoelicaudia skarzynskii to be a probable junior synonym of N. mongoliensis.[192]
  • A study on the morphology of sauropod teeth from the Cenomanian of Morocco and Algeria, comparing them to contemporaneous Cretaceous sauropod tooth morphotypes (including sauropod teeth from Africa and southern Europe), is published by Holwerda et al. (2018).[193]
  • A study on the heterodontosaurid fossils from the Early Jurassic of Argentina described by Becerra et al. (2016),[194] aiming to estimate the body size of the animal, is published by Becerra & Ramírez (2018).[195]
  • A study on the teeth of Manidens condorensis, based on new material indicative of a strong heterodonty and a novel occlusion type previously unreported in herbivorous dinosaurs, is published by Becerra et al. (2018).[196]
  • Redescription of Gigantspinosaurus sichuanensis and a study on the phylogenetic relationships of the species is published by Hao et al. (2018).[197]
  • A study on pathological characteristics of left femur of a specimen of Gigantspinosaurus sichuanensis from the Late Jurassic of China is published online by Hao et al. (2018), who interpret this specimen as probably affected by bone tumor.[198]
  • New specimen of Hesperosaurus mjosi, providing new information on the anatomy of the species and indicating that H. mjosi might have been a smaller species than Stegosaurus stenops, is described from the Upper Jurassic Morrison Formation (Montana, United States) by Maidment, Woodruff & Horner (2018).[199]
  • Redescription of the fossil material referred to Paranthodon africanus and a study on the phylogenetic relationships of this species is published by Raven & Maidment (2018).[200]
  • Probable ankylosaurian footprints are described from the Upper Jurassic Guará Formation (Brazil) by Francischini et al. (2018).[201]
  • Probable ankylosaurian footprints assigned to the ichnogenus Tetrapodosaurus are described from the Middle Jurassic (Bajocian) Zorrillo-Taberna Indiferenciadas Formation (Mexico) by Rodríguez-de la Rosa et al. (2018), representing the oldest ankylosaurian ichnofossils reported so far.[202]
  • A study aiming to test the hypothesis that convoluted nasal passages of ankylosaurs were efficient heat exchangers is published by Bourke, Porter & Witmer (2018).[203]
  • A study on the neuroanatomy of ankylosaurid dinosaurs based on skull endocasts of Talarurus plicatospineus and Tarchia teresae is published by Paulina-Carabajal et al. (2018).[204]
  • A survey of ankylosaur occurrences in the Cretaceous deposits of Alberta (Canada) and a study looking for explanation of numerous instances of ankylosaur specimens preserved overturned is published by Mallon et al. (2018).[205]
  • A study on the teeth histology and development in Changchunsaurus parvus is published by Chen et al. (2018).[206]
  • Parksosaurid tooth and vertebral centrum is described from the Campanian of the Cerro del Pueblo Formation by Rivera-Sylva et al. (2018), representing the first record of this family from Mexico.[207]
  • A study on the bone microstructure and ontogeny of basal ornithopod specimens from the Early Cretaceous of Australia is published by Woodward, Rich & Vickers-Rich (2018), who reinterpret the tracks as produced in non-marine environment.[208]
  • A toe bone of an ornithopod dinosaur is described from the Albian Hudspeth Formation (Oregon, United States) by Retallack et al. (2018), representing the first diagnostic nonavian dinosaur fossil from Oregon.[209]
  • A study on the ontogenetic changes in the postcranial skeleton of Dysalotosaurus lettowvorbecki is published by Hübner (2018).[210]
  • A study on the holotype specimen of Riabininohadros weberae, revealing previously unknown elements of the femur, astragalus and calcaneus, is published by Lopatin, Averianov & Alifanov (2018), who also report the second dinosaur specimen from the Maastrichtian of Crimea, a fragmentary skeleton of an advanced iguanodontid or primitive hadrosauroid ornithopod.[211]
  • A redescription of Iguanodon galvensis and a study on the phylogenetic relationships of the species is published by Verdú et al. (2018).[212]
  • Microfossil remains of Early Cretaceous grasses extracted from a specimen of Equijubus normani are described by Wu, You & Li (2018).[213]
  • A study on the phylogenetic relationships of Nipponosaurus sachalinensis is published by Takasaki et al. (2018).[214]
  • A study on the osteology, histology and taxonomy of the Maastrichtian hadrosauroid specimens from the Basturs Poble bonebed (Spain) is published by Fondevilla et al. (2018).[215]
  • A study on the anatomy of the perinatal specimens of Maiasaura peeblesorum from the Campanian Two Medicine Formation (Montana, United States), and on their implications for understanding of the morphological changes in the skeletons of members of this species that took place in their early growth stages, is published by Prieto-Marquez & Guenther (2018).[216]
  • Description of the morphology of the braincase of Secernosaurus koerneri is published by Becerra et al. (2018).[217]
  • A hadrosaurid nestling belonging to the genus Edmontosaurus is described from the Upper Cretaceous (Maastrichtian) Hell Creek Formation (Montana), United States) by Wosik, Goodwin & Evans (2018), who interpret its anatomy as indicating that it was capable of fully quadrupedal locomotion.[218]
  • Partial sacrum of a hadrosaurid dinosaur is described from the Campanian Cape Sebastian Sandstone (Oregon, United States) by Taylor & Lucas (2018).[219]
  • A study on the differences in shape and structural performance of the lower jaws of ceratopsians is published by Maiorino et al. (2018).[220]
  • A study evaluating whether skull ornaments of ceratopsians might have helped members of closely related sympatric species differentiate themselves is published by Knapp et al. (2018).[221]
  • A description of the anatomy of the postcranial skeleton of Yinlong downsi and a study on the phylogenetic relationships of basal ornithischians is published by Han et al. (2018).[222]
  • A study on the morphology of the joint of the occipital skull region and the first two cervical vertebrae of Psittacosaurus sibiricus is published by Podlesnov (2018).[223]
  • A study on the dental morphology and tooth replacement in Liaoceratops yanzigouensis is published by He et al. (2018).[224]
  • A study on the ontogenetic changes of the bone microstructure in Protoceratops andrewsi and their implications for the biology of this species is published by Fostowicz-Frelik & Słowiak (2018).[225]
  • A study on the differences of shape of cervical vertebrae of different specimens of Protoceratops andrewsi is published by Tereschenko (2018).[226]
  • Two isolated ceratopsid horncores are described from the Upper Cretaceous (Campanian, ∼78.5 million years ago) Foremost Formation (Alberta, Canada) by Brown (2018), representing some of the earliest ceratopsid fossils reported so far.[227]
  • Description of new fossil material of Medusaceratops lokii from the Upper Cretaceous Campanian (Judith River Formation (Montana, United States) and a study on the phylogenetic relationships of the species is published by Chiba et al. (2018).[228]
  • Small marks interpreted as feeding traces are described from a partial frill of a juvenile specimen of Centrosaurus apertus from the Dinosaur Park Formation (Alberta, Canada) by Hone, Tanke & Brown (2018).[229]
  • Description of three partial chasmosaurine skulls collected from the Dinosaur Park Formation, and age-equivalent sediments of the uppermost Oldman Formation, of southern Alberta (Canada) is published by Campbell et al. (2018).[230]
  • A study on the ecological diversity of Cretaceous herbivorous dinosaurs leading up to the Cretaceous–Paleogene extinction event, as indicated by jaw and teeth morphology, is published by Nordén et al. (2018).[231]
  • A comment on the study of Baron & Barrett[232] (which reassessed the phylogenetic relationships of Chilesaurus diegosuarezi) is published by Müller et al.(2018).[233]
  • A study on the taphonomical effects of sedimentary compression on the iliac morphology of early dinosaurs, using basal sauropodomorph specimens as a model is published by Müller, Garcia, Da-Rosa & Dias-da-Silva (2018).[234]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Acantholipan[235]

Gen. et sp. nov

Valid

Rivera-Sylva et al.

Late Cretaceous (Santonian)

Pen Formation

 Mexico

A member of the family Nodosauridae. Genus includes new species A. gonzalezi.

Adynomosaurus[236]

Gen. et sp. nov

Valid

Prieto-Márquez et al.

Late Cretaceous

Tremp Formation

 Spain

A hadrosaurid ornithopod belonging to the subfamily Lambeosaurinae. Genus includes new species A. arcanus. Announced in 2018; the final version of the article naming it was published in 2019.

Akainacephalus[237]

Gen. et sp. nov

Valid

Wiersma & Irmis

Late Cretaceous (late Campanian)

Kaiparowits Formation

 United States
( Utah)

A member of the family Ankylosauridae. The type species is A. johnsoni.

Known material and skeletal reconstructions in dorsal and lateral views

Anhuilong[238]

Gen. et sp. nov

Valid

Ren, Huang & You

Middle Jurassic

Hongqin Formation

 China

A mamenchisaurid sauropod. Genus includes new species A. diboensis. Announced in 2018; the final version of the article naming it was published in 2020.

Anodontosaurus inceptus[239]

Sp. nov

Valid

Penkalski

Late Cretaceous

Dinosaur Park Formation

 Canada
( Alberta)

A member of the family Ankylosauridae.

Skull of TMP 1997.132.1, the holotype specimen of Anodontosaurus inceptus[239]

Anomalipes[240]

Gen. et sp. nov

Valid

Yu et al.

Late Cretaceous

Wangshi Group

 China

A caenagnathid theropod. The type species is A. zhaoi.

Arkansaurus[241]

Gen. et sp. nov

Valid

Hunt & Quinn

Early Cretaceous (AlbianAptian)

Trinity Group

 United States
( Arkansas)

An ornithomimosaur theropod. Genus includes new species A. fridayi.

Reconstruction of Arkansaurus fridayi

Avimimus nemegtensis[242]

Sp. nov

Valid

Funston et al.

Late Cretaceous

Nemegt Formation

 Mongolia

An oviraptorosaurian. Announced in 2017; the final version of the article naming it was published in 2018.

Baalsaurus[243]

Gen. et sp. nov

Valid

Calvo & Riga

Late Cretaceous (Turonian-Coniacian)

Portezuelo Formation

 Argentina

A titanosaur sauropod. The type species is B. mansillai.

Bagualosaurus[244]

Gen. et sp. nov

Valid

Pretto, Langer & Schultz

Late Triassic

Santa Maria Formation

 Brazil

An early member of Sauropodomorpha. Genus includes new species B. agudoensis.

Reconstruction of Bagualosaurus agudoensis

Bannykus[245]

Gen. et sp. nov

Valid

Xu et al.

Early Cretaceous (Aptian)

Bayin-Gobi Formation

 China

An alvarezsaurian theropod. The type species is B. wulatensis.

Reconstruction of Bannykus wulatensis

Bayannurosaurus[246]

Gen. et sp. nov

Valid

Xu et al.

Early Cretaceous

Bayin-Gobi Formation

 China

A non-hadrosauriform ankylopollexian ornithopod. Genus includes new species B. perfectus.

Caihong[247]

Gen. et sp. nov

Valid

Hu et al.

Late Jurassic (Oxfordian)

Tiaojishan Formation

 China

A paravian theropod. The type species is C. juji.

Reconstruction of Caihong juji

Choconsaurus[248]

Gen. et sp. nov

Valid

Simón, Salgado & Calvo

Late Cretaceous (Cenomanian)

Huincul Formation

 Argentina

A titanosaur sauropod. The type species is C. baileywillisi. Announced in 2017; the final version of the article naming it was published in 2018.

Choyrodon[249]

Gen. et sp. nov

Valid

Gates et al.

Early Cretaceous (Albian)

Khuren Dukh Formation

 Mongolia

An iguanodontian ornithopod. The type species is C. barsboldi.

Crittendenceratops[250]

Gen. et sp. nov

Valid

Dalman et al.

Late Cretaceous (Campanian)

Fort Crittenden Formation

 United States
( Arizona)

A centrosaurine ceratopsid dinosaur belonging to the tribe Nasutoceratopsini. The type species is C. krzyzanowskii.

Reconstruction of Crittendenceratops krzyzanowskii

Diluvicursor[251]

Gen. et sp. nov

Valid

Herne et al.

Early Cretaceous (Albian)

Eumeralla Formation

 Australia

A small-bodied ornithopod. The type species is D. pickeringi.

Reconstruction of Diluvicursor pickeringi

Dryosaurus elderae[252]

Sp. nov

Valid

Carpenter & Galton

Late Jurassic

Morrison Formation

 United States
( Utah)

Dynamoterror[253]

Gen. et sp. nov

Valid

McDonald, Wolfe & Dooley

Late Cretaceous (early Campanian)

Menefee Formation

 United States
( New Mexico)

A tyrannosaurid theropod. The type species D. dynastes.

Ingentia[254]

Gen. et sp. nov

Valid

Apaldetti et al.

Late Triassic (late NorianRhaetian)

Quebrada del Barro Formation

 Argentina

An early member of Sauropodomorpha related to Lessemsaurus. Genus includes new species I. prima.

Invictarx[255]

Gen. et sp. nov

Valid

McDonald & Wolfe

Late Cretaceous (early Campanian)

Menefee Formation

 United States
( New Mexico)

A member of the family Nodosauridae. The type species is I. zephyri.

Jinyunpelta[256]

Gen. et sp. nov

Zheng et al.

Cretaceous (AlbianCenomanian)

Liangtoutang Formation

 China

A member of the family Ankylosauridae belonging to the subfamily Ankylosaurinae. The type species is J. sinensis.

Reconstruction of Jinyunpelta sinensis

Lavocatisaurus[257]

Gen. et sp. nov

Valid

Canudo et al.

Early Cretaceous (Aptian–early Albian)

Rayoso Formation

 Argentina

A rebbachisaurid sauropod. The type species is L. agrioensis.

Reconstruction of Lavocatisaurus agrioensis

Ledumahadi[258]

Gen. et sp. nov

Valid

McPhee et al.

Early Jurassic (Hettangian-Sinemurian)

Elliot Formation

 South Africa

An early member of Sauropodiformes. The type species is L. mafube.

Reconstruction of Ledumahadi mafube

Liaoningotitan[259]

Gen. et sp. nov

Valid

Zhou et al.

Early Cretaceous

Yixian Formation

 China

A titanosauriform sauropod. The type species is L. sinensis.

Lingwulong[260]

Gen. et sp. nov

Valid

Xu et al.

Late Early to early Middle Jurassic (late ToarcianBajocian)

Yanan Formation

 China

A dicraeosaurid sauropod. The type species is L. shenqi.

Reconstruction of Lingwulong shenqi

Macrocollum[261]

Gen. et sp. nov

Valid

Müller, Langer & Dias-da-Silva

Late Triassic (early Norian)

Caturrita Formation

 Brazil

An early member of Sauropodomorpha related to Unaysaurus. Genus includes new species M. itaquii.

Reconstruction of Macrocollum itaquii

Mansourasaurus[262]

Gen. et sp. nov

Valid

Sallam et al.

Late Cretaceous (Campanian)

Quseir Formation

 Egypt

A titanosaur sauropod. The type species is M. shahinae.

Reconstruction of Mansourasaurus shahinae

Maraapunisaurus[263]

Gen. et comb. nov

Valid

Carpenter

Late Jurassic (KimmeridgianTithonian)

Morrison Formation

 United States
 Colorado

A rebbachisaurid sauropod; a new genus for "Amphicoelias" fragillimus Cope (1878f).

Mongolostegus[264]

Gen. et sp. nov

Valid

Tumanova & Alifanov

Early Cretaceous (AptianAlbian)

Dzunbain Formation

 Mongolia

A member of Stegosauria. Genus includes new species M. exspectabilis.

Pilmatueia[265]

Gen. et sp. nov

Valid

Coria et al.

Early Cretaceous (Valanginian)

Mulichinco Formation

 Argentina

A dicraeosaurid sauropod. The type species is P. faundezi. Announced in 2018; the final version of the article naming it was published in 2019.

Platypelta[239]

Gen. et sp. nov

Valid

Penkalski

Late Cretaceous

Dinosaur Park Formation

 Canada
( Alberta)

A member of the family Ankylosauridae. Genus includes new species P. coombsi.

Skull of AMNH 5337, the holotype specimen of Platypelta coombsi[239]

Qiupanykus[266]

Gen. et sp. nov

Valid

et al.

Late Cretaceous (Maastrichtian)

Qiupa Formation

 China

An alvarezsaurid theropod. The type species is Q. zhangi.

Saltriovenator[267]

Gen. et sp. nov

Valid

Dal Sasso et al.

Early Jurassic (Sinemurian)

Saltrio Formation

 Italy

A ceratosaurian theropod. The type species is S. zanellai.

Reconstruction of Saltriovenator zanellai

Scolosaurus thronus[239]

Sp. nov

Valid

Penkalski

Late Cretaceous

Dinosaur Park Formation

 Canada
( Alberta)

A member of the family Ankylosauridae.

Skull of ROM 1930, the holotype specimen of Scolosaurus thronus[239]

Sibirotitan[268]

Gen. et sp. nov

Valid

Averianov et al.

Early Cretaceous (probably Barremian)

Ilek Formation

 Russia

A non-titanosaurian somphospondyl sauropod. Genus includes new species S. astrosacralis.

Thanos[269]

Gen. et sp. nov

Valid

Delcourt & Iori

Late Cretaceous (Santonian)

São José do Rio Preto Formation

 Brazil

An abelisaurid theropod. Genus includes new species T. simonattoi. Announced in 2018; the final version of the article naming it was published in 2020.

Tratayenia[270]

Gen. et sp. nov

Valid

Porfiri et al.

Late Cretaceous (Santonian)

Bajo de la Carpa Formation

 Argentina

A megaraptoran theropod. Genus includes new species T. rosalesi.

Volgatitan[271]

Gen. et sp. nov

Valid

Averianov & Efimov

Early Cretaceous (Hauterivian)

 Russia
( Ulyanovsk Oblast)

A titanosaur sauropod related to members of the group Lognkosauria. The type species is V. simbirskiensis.

Weewarrasaurus[272]

Gen. et sp. nov

Valid

Bell et al.

Late Cretaceous (Cenomanian)

Griman Creek Formation

 Australia

A small-bodied non-iguanodontian ornithopod. The type species is W. pobeni.

Xiyunykus[245]

Gen. et sp. nov

Valid

Xu et al.

Early Cretaceous (Barremian-Aptian?)

Tugulu Group

 China

An alvarezsaurian theropod. The type species is X. pengi.

Reconstruction of Xiyunykus pengi

Yizhousaurus[273]

Gen. et sp. nov

Zhang et al.

Early Jurassic

Lufeng Formation

 China

An early member of Sauropodiformes. The type species is Y. sunae.

Birds

Research

  • Dinosaur-like ossification pattern of skull bones (formation of the ossification centres of the prefrontal and postorbital) is reported in bird embryos by Smith-Paredes et al. (2018).[274]
  • A study evaluating whether eggs of early birds from the Mesozoic could have borne the weight of incubating adults is published by Deeming & Mayr (2018).[275]
  • A study on the formation of the pygostyle in extant birds and its evolution in Mesozoic birds is published by Rashid et al. (2018), who interpret their findings as indicating that the lack of pygostyle in Zhongornis haoae and other juvenile Mesozoic birds does not necessarily indicate that they are intermediate species in the long- to short-tailed evolutionary transition, and that feathered coelurosaur tail preserved in Burmese amber which was described by Xing et al. (2016)[276] might be avian.[277]
  • A study on the anatomy of the braincase of birds and non-avian dinosaurs, evaluating whether there is a link between changes in brain anatomy and loss of flight, is published by Gold & Watanabe (2018).[278]
  • A study on the preservation potential of feather keratin in the fossil record is published by Schweitzer et al. (2018);[279] the study is subsequently criticized by Saitta & Vinther (2019).[280]
  • Description of 31 samples of Cretaceous amber from Myanmar that contain feathers, providing new information on the morphology and variability of rachis-dominated feathers of Cretaceous birds, is published by Xing et al. (2018).[281]
  • A pseudoscorpion attached to barbules of a contour feather, possibly documenting a phoretic association between pseudoscorpions and Mesozoic birds, is described from the Cretaceous amber from Myanmar by Xing, McKellar & Gao (2018).[282]
  • A redescription of the bird trackway originally labeled Aquatilavipes anhuiensis from the Lower Cretaceous Qiuzhuang Formation (Anhui, China) is published by Xing et al. (2018), who transfer this ichnospecies to the ichnogenus Koreanaornis.[283]
  • Early Cretaceous (Aptian) bird footprints are described from the Kitadani Formation (Japan) by Imai, Tsukiji & Azuma (2018).[284]
  • New avian ichnospecies Ignotornis canadensis is described from the Lower Cretaceous (Albian) Gates Formation (Canada) by Buckley, McCrea & Xing (2018).[285]
  • Ignotornid tracks are described from the Lower Cretaceous of Jiangsu (China) by Xing et al. (2018), representing the first known record of the ichnogenus Goseongornipes from China.[286]
  • The twelfth specimen of Archaeopteryx, the oldest reported so far, is described by Rauhut, Foth & Tischlinger (2018).[287] This was named as the new genus Alcmonavis in 2019.
  • A study on the geometric properties of the wing bones of Archaeopteryx is published by Voeten et al. (2018), who interpret their findings as indicating that Archaeopteryx was able to actively use its wings to take to the air (using a different flight stroke than used by extant birds).[288]
  • Gastrolith masses preserved in five specimens of Jeholornis will be described by O'Connor et al. (2018).[289]
  • A new confuciusornithid specimen, most similar to Eoconfuciusornis zhengi but also sharing traits with Confuciusornis, will be described from the Upper Cretaceous Huajiying Formation (China) by Navalón et al. (2018).[290]
  • A study on the morphology of the skull of Confuciusornis sanctus is published by Elżanowski, Peters & Mayr (2018).[291]
  • An exceptionally-preserved specimen of Confuciusornis, preserving elaborate plumage patterning, is described from the Lower Cretaceous deposits in Fengning County (Hebei Province, China) estimated to be equivalent with the Dawangzhangzi Member of the Yixian Formation by Li et al. (2018).[292]
  • An articulated skeleton of an enantiornithine bird preserved in the Cretaceous amber from Myanmar is described by Xing et al. (2018).[293]
  • An early juvenile enantiornithine specimen, providing new information on the osteogenesis in members of Enantiornithes, is described from the Lower Cretaceous Las Hoyas deposits of Spain by Knoll et al. (2018).[294]
  • A study evaluating the capacity of the enantiornithines Concornis lacustris and Eoalulavis hoyasi to use intermittent flight (alternating flapping and gliding phases) is published by Serrano et al. (2018).[295]
  • A study on the morphology and diversity of enantiornithine coracoids from the Upper Cretaceous Bissekty Formation (Dzharakuduk locality, Uzbekistan) is published by Panteleev (2018).[296]
  • O’Connor et al. (2018) propose criteria for identifying medullary bone in fossils, and report probable medullary bone from a pengornithid enantiornithine specimen from the Lower Cretaceous Jiufotang Formation (China).[297]
  • A specimen of Archaeorhynchus spathula with extensive soft tissue preservation, revealing a tail morphology previously unknown in Mesozoic birds and an exceptional occurrence of fossilized lung tissue, is described from the Lower Cretaceous Jiufotang Formation (China) by Wang et al. (2018).[298]
  • Wang et al. (2018) report the presence of distinct salt gland fossa on the frontal of a bird similar to Iteravis huchzermeyeri and Gansus zheni from the Lower Cretaceous Sihedang locality (Jiufotang Formation, China); the authors also consider I. huchzermeyeri and G. zheni to be probably synonymous.[299]
  • Abundant black flies, thought to have inhabited the same environments as Cretaceous ornithurine birds and most likely fed on them, are described from the Santonian Taimyr amber (Russia) by Perkovsky, Sukhomlin & Zelenkov (2018), who use these insects as an indicator of a bird community, and argue that advanced ornithuromorph birds might have originated at higher latitudes.[300]
  • Field et al. (2018) report new specimens and previously overlooked elements of the holotype of Ichthyornis dispar, and generate a nearly complete three-dimensional reconstruction of the skull of this species.[301]
  • A study on the impact of the widespread destruction of forests during the Cretaceous–Paleogene extinction event on bird evolution, as indicated by ancestral state reconstructions of neornithine ecology and inferences about enantiornithine ecology, is published by Field et al. (2018), who interpret their findings as indicating that the global forest collapse at the end of the Cretaceous caused extinction of predominantly tree-dwelling birds, while bird groups that survived the extinction and gave rise to extant birds were non-arboreal.[302]
  • A study on the evolution of the anatomy of the crown-bird skull is published by Felice & Goswami (2018), who also present a hypothetical reconstruction of the ancestral crown-bird skull.[303]
  • A fossil tinamou belonging to the genus Eudromia, exceeding the size range of living species of the genus, is described from the Lujanian sediments in Marcos Paz County (Buenos Aires Province, Argentina) by Cenizo et al. (2018).[304]
  • A study on the dietary behavior of four species of the moa and their interactions with parasites based on data from their coprolites is published by Boast et al. (2018).[305]
  • A study on the seeds preserved in moa coprolites is published by Carpenter et al. (2018), who question the hypothesis that some of the largest-seeded plants of New Zealand were dispersed by moas.[306]
  • A study on the genetic and morphological diversity of the emus, including extinct island populations, is published by Thomson et al. (2018).[307]
  • A study on the timing of first human arrival in Madagascar, as indicated by evidence of prehistoric human modification of multiple elephant bird postcranial elements, is published by Hansford et al. (2018).[308]
  • A study on the anatomy of the brains of elephant birds Aepyornis maximus and A. hildebrandti, and on its implications for inferring the ecology and behaviour of these birds, is published by Torres & Clarke (2018).[309]
  • A model of development of bony pseudoteeth of the odontopterygiform birds is proposed by Louchart et al. (2018).[310]
  • A study on the phylogenetic relationships of the taxa assigned to the family Vegaviidae by Agnolín et al. (2017)[311] is published by Mayr et al. (2018).[312]
  • A study on the adaptations for filter-feeding (other than beak shape) in the feeding apparatus of modern ducks, evaluating whether they could be also found in the skull of Presbyornis, is published by Zelenkov & Stidham (2018), who argue that Presbyornis most likely was a poorly specialized filter-feeder.[313]
  • A study on the phylogenetic relationships of the species Chendytes lawi and the Labrador duck (Camptorhynchus labradorius) is published by Buckner et al. (2018).[314]
  • Schmidt (2018) interprets more than 1000 large, near-circular gravel mounds from western New South Wales (Australia) as likely to be nest mounds constructed by an extinct bird, similar to the malleefowl but larger.[315]
  • A study on the phylogenetic relationships of Foro panarium is published by Field & Hsiang (2018), who consider this species to be a stem-turaco.[316]
  • Petralca austriaca, originally thought to be an auk, is reinterpreted as a member of Gaviiformes by Göhlich & Mayr (2018).[317]
  • Globuli ossei (subspherical structures of endochondral origin, inserted in the hypertrophic cartilage of long bones) are reported for the first time in a bird (a fossil penguin Delphinornis arctowskii from Antarctica) by Garcia Marsà, Tambussi & Cerda (2018).[318]
  • Redescription of the anatomy of the fossil penguin Madrynornis mirandus and a study on the phylogenetic relationships of this species is published by Degrange, Ksepka & Tambussi (2018).[319]
  • Fossil material attributed to the extinct Hunter Island penguin (Tasidyptes hunteri) is reinterpreted as assemblage of remains from three extant penguin species by Cole et al. (2018).[320]
  • A study on the history of penguin colonization of the Vestfold Hills (Antarctica), indicating that penguins started colonizing the northern Vestfold Hills around 14.6 thousand years before present, is published by Gao et al. (2018).[321]
  • A study on the history of active and abandoned Adélie penguin colonies at Cape Adare (Antarctica), based on new excavations and radiocarbon dating, is published by Emslie, McKenzie & Patterson (2018).[322]
  • A study on the mummified Adélie penguin carcasses and associated sediments from the Long Peninsula (East Antarctica), and on their implications for inferring the causes of the abandonment of numerous penguin sub‐colonies in this area during the 2nd millennium, is published by Gao et al. (2018).[323]
  • New bird fossils, including the first reported tarsometatarsus of the plotopterid Tonsala hildegardae are described from the late Eocene/early Oligocene Makah Formation and the Oligocene Pysht Formation (Washington state, United States) by Mayr & Goedert (2018), who name a new plotopterid subfamily Tonsalinae.[324]
  • A well-preserved scapula of a plotopterid, enabling the reconstruction of the triosseal canal in plotopterids, is described from the Oligocene Jinnobaru Formation (Japan) by Ando & Fukata (2018).[325]
  • Fossil remains of the spectacled cormorant (Phalacrocorax perspicillatus) are described from the upper Pleistocene of Shiriya (northeast Japan) by Watanabe, Matsuoka & Hasegawa (2018).[326]
  • Extinct lowland kagu (Rhynochetos orarius) is reinterpreted as synonymous with extant kagu (Rhynochetos jubatus) by Theuerkauf & Gula (2018).[327]
  • A study on the phylogenetic relationships of the Rodrigues owl and Mauritius owl is published by Louchart et al. (2018).[328]
  • Fossils of the barn owl (Tyto alba) are described from the Dinaledi Chamber of the Rising Star Cave system (South Africa) by Kruger & Badenhorst (2018), who also evaluate how these bird bones were introduced into the Dinaledi Chamber.[329]
  • New fossils of stem-mousebirds belonging to the family Sandcoleidae, providing new information on the anatomy of members of this family, are described from the Eocene of the Messel pit (Germany) by Mayr (2018).[330]
  • Partial skeleton of an early member of Coraciiformes of uncertain generic and specific assignment, showing several previously unknown features of the skull and vertebral column of early coraciiforms, is described from the Lower Eocene (53.5–51.5 million years old) London Clay (United Kingdom) by Mayr & Walsh (2018).[331]
  • New phorusrhacid fossils are described from the Pleistocene of Uruguay by Jones et al. (2018), providing evidence of survival of phorusrhacids until the end of the Pleistocene.[332]
  • A study on the phylogenetic relationships of the extinct Cuban macaw (Ara tricolor) is published by Johansson et al. (2018).[333]
  • A study on an ancient DNA of scarlet macaws recovered from archaeological sites in Chaco Canyon and the contemporaneous Mimbres area of New Mexico is published by George et al. (2018), who report low genetic diversity in this sample, and interpret their findings as indicating that people at an undiscovered Pre-Hispanic settlement dating between 900 and 1200 CE managed a macaw breeding colony outside their endemic range.[334]
  • A study on the bird fossils from the Olduvai Gorge site (Tanzania) and their implications for inferring the environmental context of the site during the Oldowan-Acheulean transitional period is published by Prassack et al. (2018).[335]
  • A study on the bird fossil assemblage from the Pleistocene of the Rio Secco Cave (north-eastern Italy) and its implications for the palaeoenvironmental reconstructions of the site is published by Carrera et al. (2018).[336]
  • Oswald & Steadman (2018) report nearly 500 (probably late Pleistocene) bird fossils collected on New Providence (The Bahamas) in 1958 and 1960.[337]
  • A study on the fossils of Pleistocene birds collected on Picard Island (Seychelles) in 1987 is published by Hume, Martill & Hing (2018).[338]
  • A revision of non-passeriform landbird fossils from the Pleistocene of Shiriya (northeast Japan) is published by Watanabe, Matsuoka & Hasegawa (2018).[339]
  • Remains of 32 species of seabirds and related taxa are reported from the middle–late Pleistocene Shiriya local fauna (northeastern Japan) by Watanabe, Matsuoka & Hasegawa (2018).[340]
  • Description of Late Pleistocene bird fauna from Buso Doppio del Broion Cave (Berici Hills, Italy), including fossils of the snowy owl and the northern hawk-owl (considered to be markers of a colder climate than the present one) and the first Italian Pleistocene fossil remains of the Eurasian wren and the black redstart, is published by Carrera et al. (2018).[341]
  • Bird eggshell fragments are described from the Fitterer Ranch locality within the Oligocene Brule Formation (North Dakota, United States) by Lawver & Boyd (2018), who name a new ootaxon Metoolithus jacksonae.[342]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Aquila claudeguerini[343]

Sp. nov

Valid

Mourer‑Chauviré & Bonifay

Early Pleistocene

 France

A species of Aquila.

Ardenna davealleni[344]

Sp. nov

Valid

Tennyson & Mannering

Pliocene

 New Zealand

A species of Ardenna.

Chenoanas asiatica[345]

Sp. nov

Valid

Zelenkov et al.

Middle Miocene

 China
 Mongolia

A duck.

Cinclosoma elachum[346]

Sp. nov

Valid

Nguyen, Archer & Hand

Miocene

Riversleigh World Heritage Area

 Australia

A quail-thrush.

Ducula tihonireasini[347]

Sp. nov

Valid

Rigal, Kirch & Worthy

Holocene

 French Polynesia

An imperial pigeon.

Eogranivora[348]

Gen. et sp. nov

Valid

Zheng et al.

Early Cretaceous

Yixian Formation

 China

An early member of Ornithuromorpha. Genus includes new species E. edentulata.

Gettyia[349]

Gen. et comb. nov

Valid

Atterholt, Hutchison & O’Connor

Late Cretaceous (Campanian)

Two Medicine Formation

 United States
( Montana)

A member of Enantiornithes belonging to the family Avisauridae. The type species is "Avisaurus" gloriae Varricchio & Chiappe (1995).

Jinguofortis[350]

Gen. et sp. nov

Valid

Wang, Stidham & Zhou

Early Cretaceous

Dabeigou Formation

 China

A basal member of Pygostylia, probably a relative of Chongmingia. Genus includes new species J. perplexus.

Kischinskinia[351]

Gen. et sp. nov

Valid

Volkova & Zelenkov

Early Miocene

 Russia

A passerine belonging to the group Certhioidea. Genus includes new species K. scandens.

Litorallus[352]

Gen. et sp. nov

Valid

Mather et al.

Early Miocene (Altonian)

Bannockburn Formation

 New Zealand

A rail. The type species is L. livezeyi.

Mirarce[349]

Gen. et sp. nov

Valid

Atterholt, Hutchison & O’Connor

Late Cretaceous (late Campanian)

Kaiparowits Formation

 United States
( Utah)

A member of Enantiornithes belonging to the family Avisauridae. The type species is M. eatoni.

Muriwaimanu[353]

Gen. et comb. nov

Valid

Mayr et al.

Late Paleocene

Waipara Greensand

 New Zealand

An early penguin; a new genus for "Waimanu" tuatahi Ando, Jones & Fordyce in Slack et al. (2006).

Pandion pannonicus[354]

Sp. nov

Valid

Kessler

Late Oligocene

 Hungary

A species of Pandion.

Panraogallus[355]

Gen. et sp. nov

Li et al.

Late Miocene

Liushu Formation

 China

A member of the family Phasianidae. The type species is P. hezhengensis.

Priscaweka[352]

Gen. et sp. nov

Valid

Mather et al.

Early Miocene (Altonian)

Bannockburn Formation

 New Zealand

A rail. The type species is P. parvales.

Rallus gracilipes[356]

Sp. nov

Valid

Takano & Steadman

Late Pleistocene

 The Bahamas

A rail, a species of Rallus.

Romainvillia kazakhstanensis[357]

Sp. nov

Valid

Zelenkov

Late Eocene

Kustovskaya Formation

 Kazakhstan

A member of Anseriformes belonging to the family Romainvillidae.

Scolopax mira ohyamai [358]

Subsp. nov.

Valid

Matsuoka & Hasegawa

Late Pleistocene

 Japan

An extinct subspecies of the Amami woodcock (Scolopax mira).

Sequiwaimanu[353]

Gen. et sp. nov

Valid

Mayr et al.

Middle Paleocene

Waipara Greensand

 New Zealand

An early penguin. Genus includes new species S. rosieae.

Vanellus liffyae[359]

Sp. nov.

Valid

De Pietri et al.

Late Pliocene

 Australia

A species of Vanellus.

Vorombe[360]

Gen. et comb. nov

Hansford & Turvey

Holocene

 Madagascar

An elephant bird. The type species is "Aepyornis" titan Andrews (1894).

Winnicavis[361]

Gen. et sp. nov

Valid

Bocheński et al.

Oligocene (Rupelian)

Menilite Formation

 Poland

A passerine of uncertain phylogenetic placement, approximately the size of a great tit. The type species is W. gorskii.

Yangavis[362]

Gen. et sp. nov

Valid

Wang & Zhou

Early Cretaceous (Aptian)

Yixian Formation

 China

A member of the family Confuciusornithidae. Genus includes new species Y. confucii.

Zygodactylus grandei[363]

Sp. nov.

Valid

Smith, DeBee & Clarke

Early Eocene

Green River Formation

 United States
( Wyoming)

A member of the family Zygodactylidae.

Pterosaurs

Research

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Alcione[381]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin

 Morocco

A member of the family Nyctosauridae. The type species is A. elainus.

Barbaridactylus[381]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin

 Morocco

A member of the family Nyctosauridae. The type species is B. grandis.

Caelestiventus[382]

Gen. et sp. nov

Valid

Britt et al.

Late Triassic (probably late Norian or Rhaetian)

Nugget Sandstone

 United States
( Utah)

A relative of Dimorphodon. Genus includes new species C. hanseni.

Coloborhynchus fluviferox [383]

Sp. nov

Valid

Jacobs et al.

Cretaceous

Kem Kem Beds

 Morocco

Announced in 2018; the final version of the article naming it was published in 2019.

Klobiodon[384]

Gen. et sp. nov

Valid

O’Sullivan & Martill

Middle Jurassic (Bathonian)

Taynton Limestone Formation

 United Kingdom

A member of the family Rhamphorhynchidae. The type species is K. rochei.

Mistralazhdarcho[385]

Gen. et sp. nov

Valid

Vullo et al.

Late Cretaceous (Campanian)

 France

A member of the family Azhdarchidae. Genus includes new species M. maggii.

Serradraco[386]

Gen. et comb. nov

Valid

Rigal, Martill & Sweetman

Early Cretaceous (late Valanginian or early Hauterivian)

Upper Tunbridge Wells Sand Formation

 United Kingdom

A pterodactyloid pterosaur; a new genus for "Pterodactylus" sagittirostris Owen (1874). Announced in 2017; the final version of the article naming it was published in 2018.

Simurghia[381]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin

 Morocco

A member of the family Nyctosauridae. The type species is S. robusta.

Tethydraco[381]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin

 Morocco

A member of the family Pteranodontidae. The type species is T. regalis.

Vesperopterylus[387]

Gen. et sp. nov

Valid

et al.

Early Cretaceous

Jiufotang Formation

 China

A member of the family Anurognathidae. Genus includes new species V. lamadongensis. Announced in 2017; the final version of the article naming it was published in 2018.

Xericeps [388]

Gen. et sp. nov

Valid

Martill et al.

Cretaceous (Albian or early Cenomanian)

Kem Kem Beds

 Morocco

A member of Azhdarchoidea. The type species is X. curvirostris. Announced in 2017; the final version of the article naming it was published in 2018.

Other archosaurs

Research

  • A study on the anatomy of Teleocrater rhadinus is published by Nesbitt et al. (2018).[389]
  • A study on the phylogenetic relationships of lagerpetid dinosauromorphs is published by Müller, Langer & Dias-da-Silva (2018).[390]
  • New specimen of Dromomeron romeri (potentially representing the youngest known lagerpetid in North America, if not worldwide) is described from the Owl Rock Member of the Chinle Formation (Arizona, United States) by Marsh (2018).[391]
  • A study on the phylogenetic relationships of Pisanosaurus mertii is published by Agnolín & Rozadilla (2018), who interpret the taxon as a likely silesaurid.[392]
  • Reevaluation of Caseosaurus crosbyensis and a study on the phylogenetic relationships of the species is published by Baron & Williams (2018).[393]
  • Fossils of a member of the genus Smok of uncertain specific assignment are described from the Upper Triassic Marciszów site (southern Poland) by Niedźwiedzki & Budziszewska-Karwowska (2018).[394]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Soumyasaurus[395]

Gen. et sp. nov

Valid

Sarıgül, Agnolín & Chatterjee

Late Triassic

Tecovas Formation

 United States
( Texas)

A member of Dinosauriformes, probably a member of the family Silesauridae. The type species is S. aenigmaticus.

References

  1. Robert J. Brocklehurst; Emma R. Schachner; William I. Sellers (2018). "Vertebral morphometrics and lung structure in non-avian dinosaurs". Royal Society Open Science. 5 (10): 180983. doi:10.1098/rsos.180983. PMC 6227937. PMID 30473845.
  2. Gregory Paul (2019). "Comment on Brocklehurst et al.". Royal Society Open Science. 6 (2): Article ID 181872. Bibcode:2019RSOS....681872P. doi:10.1098/rsos.181872. PMC 6408402. PMID 30891298.
  3. Armita R. Manafzadeh; Kevin Padian (2018). "ROM mapping of ligamentous constraints on avian hip mobility: implications for extinct ornithodirans". Proceedings of the Royal Society B: Biological Sciences. 285 (1879): 20180727. doi:10.1098/rspb.2018.0727. PMC 5998106. PMID 29794053.
  4. Henry P. Tsai; Kevin M. Middleton; John R. Hutchinson; Casey M. Holliday (2018). "Hip joint articular soft tissues of non-dinosaurian Dinosauromorpha and early Dinosauria: evolutionary and biomechanical implications for Saurischia". Journal of Vertebrate Paleontology. 38 (1): e1427593. doi:10.1080/02724634.2017.1427593.
  5. Andrea Cau (2018). "The assembly of the avian body plan: a 160-million-year long process" (PDF). Bollettino della Società Paleontologica Italiana. 57 (1): 1–25. doi:10.4435/BSPI.2018.01.
  6. Edina Prondvai; Pascal Godefroit; Dominique Adriaens; Dong-Yu Hu (2018). "Intraskeletal histovariability, allometric growth patterns, and their functional implications in bird-like dinosaurs". Scientific Reports. 8 (1): Article number 258. Bibcode:2018NatSR...8..258P. doi:10.1038/s41598-017-18218-9. PMC 5762864. PMID 29321475.
  7. Maria E. McNamara; Fucheng Zhang; Stuart L. Kearns; Patrick J. Orr; André Toulouse; Tara Foley; David W. E. Hone; Chris S. Rogers; Michael J. Benton; Diane Johnson; Xing Xu; Zhonghe Zhou (2018). "Fossilized skin reveals coevolution with feathers and metabolism in feathered dinosaurs and early birds". Nature Communications. 9 (1): Article number 2072. Bibcode:2018NatCo...9.2072M. doi:10.1038/s41467-018-04443-x. PMC 5970262. PMID 29802246.
  8. Chase D. Brownstein (2018). "Trace fossils on dinosaur bones reveal ecosystem dynamics along the coast of eastern North America during the latest Cretaceous". PeerJ. 6: e4973. doi:10.7717/peerj.4973. PMC 6001717. PMID 29910985.
  9. Li, Zhiheng; Zhou, Zhonghe; Clarke, Julia A. (2018). "Convergent evolution of a mobile bony tongue in flighted dinosaurs and pterosaurs". PLOS ONE. 13 (6): e0198078. doi:10.1371/journal.pone.0198078. ISSN 1932-6203. PMC 6010247. PMID 29924798.
  10. Tariq Zouheir; Abdelkbir Hminna; Hendrik Klein; Abdelouahed Lagnaoui; Hafid Saber; Joerg W. Schneider (2018). "Unusual archosaur trackway and associated tetrapod ichnofauna from Irohalene member (Timezgadiouine formation, late Triassic, Carnian) of the Argana Basin, Western High Atlas, Morocco". Historical Biology: An International Journal of Paleobiology. 32 (5): 589–601. doi:10.1080/08912963.2018.1513506.
  11. Martin Lockley; Rhett Burton; Lisa Grondel (2018). "A large assemblage of tetrapod tracks from the Cretaceous Naturita Formation, Cedar Canyon region, southwestern Utah". Cretaceous Research. 92: 108–121. doi:10.1016/j.cretres.2018.08.003.
  12. Ashley L. Ferguson; David J. Varricchio; Alex J. Ferguson (2018). "Nest site taphonomy of colonial ground-nesting birds at Bowdoin National Wildlife Refuge, Montana". Historical Biology: An International Journal of Paleobiology. 32 (7): 902–916. doi:10.1080/08912963.2018.1546699.
  13. María B. Von Baczko (2018). "Rediscovered cranial material of Venaticosuchus rusconii enables the first jaw biomechanics in Ornithosuchidae (Archosauria: Pseudosuchia)". Ameghiniana. 55 (4): 365–379. doi:10.5710/AMGH.19.03.2018.3170. hdl:11336/99976.
  14. Sterling J. Nesbitt; Michelle R. Stocker; William G. Parker; Thomas A. Wood; Christian A. Sidor; Kenneth D. Angielczyk (2018). "The braincase and endocast of Parringtonia gracilis, a Middle Triassic suchian (Archosaur: Pseudosuchia)". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 122–141. doi:10.1080/02724634.2017.1393431.
  15. Ignacio A. Cerda; Julia B. Desojo; Torsten M. Scheyer (2018). "Novel data on aetosaur (Archosauria, Pseudosuchia) osteoderm microanatomy and histology: palaeobiological implications". Palaeontology. 61 (5): 721–745. doi:10.1111/pala.12363.
  16. Ana Carolina Biacchi Brust; Julia Brenda Desojo; Cesar Leandro Schultz; Voltaire Dutra Paes-Neto; Átila Augusto Stock Da-Rosa (2018). "Osteology of the first skull of Aetosauroides scagliai Casamiquela 1960 (Archosauria: Aetosauria) from the Upper Triassic of southern Brazil (Hyperodapedon Assemblage Zone) and its phylogenetic importance". PLOS ONE. 13 (8): e0201450. Bibcode:2018PLoSO..1301450B. doi:10.1371/journal.pone.0201450. PMC 6093665. PMID 30110362.
  17. M. Belen von Baczko; Jeremías R.A. Taborda; Julia Brenda Desojo (2018). "Paleoneuroanatomy of the aetosaur Neoaetosauroides engaeus (Archosauria: Pseudosuchia) and its paleobiological implications among archosauriforms". PeerJ. 6: e5456. doi:10.7717/peerj.5456. PMC 6109373. PMID 30155359.
  18. William G. Parker (2018). "Redescription of Calyptosuchus (Stagonolepis) wellesi (Archosauria: Pseudosuchia: Aetosauria) from the Late Triassic of the Southwestern United States with a discussion of genera in vertebrate paleontology". PeerJ. 6: e4291. doi:10.7717/peerj.4291. PMC 5798403. PMID 29416953.
  19. Devin K. Hoffman; Andrew B. Heckert; Lindsay E. Zanno (2018). "Under the armor: X-ray computed tomographic reconstruction of the internal skeleton of Coahomasuchus chathamensis (Archosauria: Aetosauria) from the Upper Triassic of North Carolina, USA, and a phylogenetic analysis of Aetosauria". PeerJ. 6: e4368. doi:10.7717/peerj.4368. PMC 5815331. PMID 29456892.
  20. William G. Parker (2018). "Anatomical notes and discussion of the first described aetosaur Stagonolepis robertsoni (Archosauria: Suchia) from the Upper Triassic of Europe, and the use of plesiomorphies in aetosaur biochronology". PeerJ. 6: e5455. doi:10.7717/peerj.5455. PMC 6118205. PMID 30186682.
  21. Dawid Dróżdż (2018). "Osteology of a forelimb of an aetosaur Stagonolepis olenkae (Archosauria: Pseudosuchia: Aetosauria) from the Krasiejów locality in Poland and its probable adaptations for a scratch-digging behavior". PeerJ. 6: e5595. doi:10.7717/peerj.5595. PMC 6173166. PMID 30310738.
  22. Cedric J. Hagen; Eric M. Roberts; Corwin Sullivan; Jun Liu; Yanyin Wang; Prince C. Owusu Agyemang; Xing Xu (2018). "Taphonomy, geological age, and paleobiogeography of Lotosaurus adentus (Archosauria: Poposauroidea) from the Middle-Upper Triassic Badong Formation, Hunan, China". PALAIOS. 33 (3): 106–124. Bibcode:2018Palai..33..106H. doi:10.2110/palo.2017.084.
  23. Lúcio Roberto-Da-Silva; Rodrigo Temp Müller; Marco Aurélio Gallo de França; Sérgio Furtado Cabreira; Sérgio Dias-Da-Silva (2018). "An impressive skeleton of the giant top predator Prestosuchus chiniquensis (Pseudosuchia: Loricata) from the Triassic of Southern Brazil, with phylogenetic remarks". Historical Biology: An International Journal of Paleobiology. 32 (7): 976–995. doi:10.1080/08912963.2018.1559841.
  24. Candice M. Stefanic; Sterling J. Nesbitt (2018). "The axial skeleton of Poposaurus langstoni (Pseudosuchia: Poposauroidea) and its implications for accessory intervertebral articulation evolution in pseudosuchian archosaurs". PeerJ. 6: e4235. doi:10.7717/peerj.4235. PMC 5816584. PMID 29472991.
  25. Kathleen N. Dollman; James M. Clark; Mark A. Norell; Xu Xing; Jonah N. Choiniere (2018). "Convergent evolution of a eusuchian-type secondary palate within Shartegosuchidae". American Museum Novitates. 3901 (3901): 1–23. doi:10.1206/3901.1. hdl:2246/6896.
  26. Yanina Herrera; Juan Martín Leardi; Marta S. Fernández (2018). "Braincase and endocranial anatomy of two thalattosuchian crocodylomorphs and their relevance in understanding their adaptations to the marine environment". PeerJ. 6: e5686. doi:10.7717/peerj.5686. PMC 6263203. PMID 30515353.
  27. Katja Waskow; Detlef Grzegorczyk; P. Martin Sander (2018). "The first record of Tyrannoneustes (Thalattosuchia: Metriorhynchidae): a complete skull from the Callovian (late Middle Jurassic) of Germany". PalZ. 92 (3): 457–480. doi:10.1007/s12542-017-0395-z.
  28. Gabriel Lio; Federico L. Agnolin; Agustín G. Martinelli; Martín D. Ezcurra; Fernando E. Novas (2018). "New specimen of the enigmatic, Late Cretaceous crocodyliform Neuquensuchus universitas sheds light on the anatomy of the species". Cretaceous Research. 83: 62–74. doi:10.1016/j.cretres.2017.09.014.
  29. Francisco Barrios; Paula Bona; Ariana Paulina Carabajal; Zulma Gasparini (2018). "Re-description of the cranio-mandibular anatomy of Notosuchus terrestris (Crocodyliformes, Mesoeucrocodylia) from the Upper Cretaceous of Patagonia". Cretaceous Research. 83: 3–39. doi:10.1016/j.cretres.2017.08.016.
  30. Fabiano Vidoi Iori; Thiago da Silva Marinho; Ismar de Souza Carvalho; Luiz Augusto dos Santos Frare (2018). "Cranial morphology of Morrinhosuchus luziae (Crocodyliformes, Notosuchia) from the Upper Cretaceous of the Bauru Basin, Brazil". Cretaceous Research. 86: 41–52. doi:10.1016/j.cretres.2018.02.010.
  31. Fabiano Vidoi Iori; Ismar de Souza Carvalho (2018). "The Cretaceous crocodyliform Caipirasuchus: Behavioral feeding mechanisms". Cretaceous Research. 84: 181–187. doi:10.1016/j.cretres.2017.11.023. hdl:11422/3392.
  32. Kamila L. N. Bandeira; Arthur S. Brum; Rodrigo V. Pêgas; Giovanne M. Cidade; Borja Holgado; André Cidade; Rafael Gomes de Souza (2018). "The Baurusuchidae vs Theropoda record in the Bauru Group (Upper Cretaceous, Brazil): a taphonomic perspective". Journal of Iberian Geology. 44 (1): 25–54. doi:10.1007/s41513-018-0048-4.
  33. Pedro L. Godoy; Gabriel S. Ferreira; Felipe C. Montefeltro; Bruno C. Vila Nova; Richard J. Butler; Max C. Langer (2018). "Evidence for heterochrony in the cranial evolution of fossil crocodyliforms" (PDF). Palaeontology. 61 (4): 543–558. doi:10.1111/pala.12354.
  34. Juan Martín Leardi; Diego Pol; Zulma Gasparini (2018). "New Patagonian baurusuchids (Crocodylomorpha; Notosuchia) from the Bajo de la Carpa Formation (Upper Cretaceous; Neuquén, Argentina): New evidences of the early sebecosuchian diversification in Gondwana". Comptes Rendus Palevol. 17 (8): 504–521. doi:10.1016/j.crpv.2018.02.002.
  35. Mariana V.A.Sena; Rafael C.L.P. Andrade; Juliana M. Sayão; Gustavo R. Oliveira (2018). "Bone microanatomy of Pepesuchus deiseae (Mesoeucrocodylia, Peirosauridae) reveals a mature individual from the Upper Cretaceous of Brazil". Cretaceous Research. 90: 335–348. doi:10.1016/j.cretres.2018.06.008.
  36. D.I. Pashchenko; I.T. Kuzmin; A.G. Sennikov; P.P. Skutschas; M.B. Efimov (2018). "On the finding of neosuchians (Neosuchia, Crocodyliformes) in the Middle Jurassic (Bathonian) deposits of the Moscow Region". Paleontological Journal. 52 (5): 550–562. doi:10.1134/S0031030118050118.
  37. Jihed Dridi (2018). "New fossils of the giant pholidosaurid genus Sarcosuchus from the Early Cretaceous of Tunisia". Journal of African Earth Sciences. 147: 268–280. Bibcode:2018JAfES.147..268D. doi:10.1016/j.jafrearsci.2018.06.023.
  38. Louise M. V. Meunier; Hans C. E. Larsson (2018). "Trematochampsa taqueti as a nomen dubium and the crocodyliform diversity of the Upper Cretaceous In Beceten Formation of Niger". Zoological Journal of the Linnean Society. 182 (3): 659–680. doi:10.1093/zoolinnean/zlx061.
  39. A. de Celis; I. Narváez; F. Ortega (2018). "Pelvic and femoral anatomy of the Allodaposuchidae (Crocodyliformes, Eusuchia) from the Late Cretaceous of Lo Hueco (Cuenca, Spain)". Journal of Iberian Geology. 44 (1): 85–98. doi:10.1007/s41513-017-0044-0.
  40. Tai Kubo; Masateru Shibata; Wilailuck Naksri; Pratueng Jintasakul; Yoichi Azuma (2018). "The earliest record of Asian Eusuchia from the Lower Cretaceous Khok Kruat Formation of northeastern Thailand". Cretaceous Research. 82: 21–28. doi:10.1016/j.cretres.2017.05.021.
  41. Karla J. Leite; Daniel C. Fortier (2018). "The palate and choanae structure of the Susisuchus anatoceps (Crocodyliformes, Eusuchia): phylogenetic implications". PeerJ. 6: e5372. doi:10.7717/peerj.5372. PMC 6089207. PMID 30128185.
  42. Caitlin E. Syme; Steven W. Salisbury (2018). "Taphonomy of Isisfordia duncani specimens from the Lower Cretaceous (upper Albian) portion of the Winton Formation, Isisford, central-west Queensland". Royal Society Open Science. 5 (3): 171651. Bibcode:2018RSOS....571651S. doi:10.1098/rsos.171651. PMC 5882695. PMID 29657771.
  43. Michael S. Y. Lee; Adam M. Yates (2018). "Tip-dating and homoplasy: reconciling the shallow molecular divergences of modern gharials with their long fossil record". Proceedings of the Royal Society B: Biological Sciences. 285 (1881): 20181071. doi:10.1098/rspb.2018.1071. PMC 6030529. PMID 30051855.
  44. Masaya Iijima; Tai Kubo; Yoshitsugu Kobayashi (2018). "Comparative limb proportions reveal differential locomotor morphofunctions of alligatoroids and crocodyloids". Royal Society Open Science. 5 (3): 171774. Bibcode:2018RSOS....571774I. doi:10.1098/rsos.171774. PMC 5882705. PMID 29657781.
  45. Adam P. Cossette; Christopher A. Brochu (2018). "A new specimen of the alligatoroid Bottosaurus harlani and the early history of character evolution in alligatorids". Journal of Vertebrate Paleontology. 38 (4): (1)–(22). doi:10.1080/02724634.2018.1486321.
  46. Xiao-Chun Wu; Chun Li; Yan-Yin Wang (2018). "Taxonomic reassessment and phylogenetic test of Asiatosuchus nanlingensis Young, 1964 and Eoalligator chunyii Young, 1964". Vertebrata PalAsiatica. 56 (2): 137–146. doi:10.19615/j.cnki.1000-3118.170803.
  47. Giovanne M. Cidade; Andrés Solórzano; Ascánio Daniel Rincón; Douglas Riff; Annie Schmaltz Hsiou (2018). "Redescription of the holotype of the Miocene crocodylian Mourasuchus arendsi (Alligatoroidea, Caimaninae) and perspectives on the taxonomy of the species". Historical Biology: An International Journal of Paleobiology. 32 (6): 733–749. doi:10.1080/08912963.2018.1528246.
  48. Christian Foth; María Victoria Fernandez Blanco; Paula Bona; Torsten M. Scheyer (2018). "Cranial shape variation in jacarean caimanines (Crocodylia, Alligatoroidea) and its implications in the taxonomic status of extinct species: The case of Melanosuchus fisheri" (PDF). Journal of Morphology. 279 (2): 259–273. doi:10.1002/jmor.20769. PMID 29139133.
  49. Rafael César Lima Pedroso de Andrade; Mariana Valéria Araújo Sena; Esaú Victor Araújo; Renan Alfredo Machado Bantim; Douglas Riff; Juliana Manso Sayão (2018). "Osteohistological study on both fossil and living Caimaninae (Crocodyliformes, Crocodylia) from South America and preliminary comments on growth physiology and ecology". Historical Biology: An International Journal of Paleobiology. 32 (3): 346–355. doi:10.1080/08912963.2018.1493475.
  50. Anderson Aires Eduardo; Pablo Ariel Martinez; Sidney Feitosa Gouveia; Franciely da Silva Santos; Wilcilene Santos de Aragão; Jennifer Morales-Barbero; Leonardo Kerber; Alexandre Liparini (2018). "Extending the paleontology–biogeography reciprocity with SDMs: Exploring models and data in reducing fossil taxonomic uncertainty". PLOS ONE. 13 (3): e0194725. Bibcode:2018PLoSO..1394725E. doi:10.1371/journal.pone.0194725. PMC 5874039. PMID 29590174.
  51. Andrés Solórzano; Mónica Núñez-Flores; Ascanio D. Rincón (2018). "Gryposuchus (Crocodylia, Gavialoidea) from the early Miocene of Venezuela". PalZ. 92 (1): 121–129. doi:10.1007/s12542-017-0383-3.
  52. Rafael Gomes de Souza; Douglas Riff; Jonas P. de Souza-Filho; Alexander W. A. Kellner (2018). "Revisiting Gryposuchus jessei Gürich, 1912 (Crocodylia: Gavialoidea): specimen description and comments on the genus". Zootaxa. 4457 (1): 167–178. doi:10.11646/zootaxa.4457.1.9. PMID 30314186.
  53. Robert E. Weems (2018). "Crocodilians of the Calvert Cliffs". Smithsonian Contributions to Paleobiology. 100: 213–240. doi:10.5479/si.1943-6688.100.
  54. Ai Ito; Riosuke Aoki; Ren Hirayama; Masataka Yoshida; Hiroo Kon; Hideki Endo (2018). "The rediscovery and taxonomical reexamination of the longirostrine crocodylian from the Pleistocene of Taiwan". Paleontological Research. 22 (2): 150–155. doi:10.2517/2017PR016.
  55. Torsten M. Scheyer; Massimo Delfino; Nicole Klein; Nancy Bunbury; Frauke Fleischer-Dogley; Dennis M. Hansen (2018). "Trophic interactions between larger crocodylians and giant tortoises on Aldabra Atoll, Western Indian Ocean, during the Late Pleistocene". Royal Society Open Science. 5 (1): 171800. doi:10.1098/rsos.171800. PMC 5792950. PMID 29410873.
  56. Gary S. Morgan; Nancy A. Albury; Renato Rímoli; Phillip Lehman; Alfred L. Rosenberger; Siobhán B. Cooke (2018). "The Cuban crocodile (Crocodylus rhombifer) from Late Quaternary underwater cave deposits in the Dominican Republic". American Museum Novitates. 2018 (3916): 1–56. doi:10.1206/3916.1. hdl:2246/6920.
  57. Roberto-Da-Silva, Lúcio; Müller, Rodrigo Temp; França, Marco Aurélio Gallo de; Cabreira, Sérgio Furtado; Dias-Da-Silva, Sérgio (2018-12-24). "An impressive skeleton of the giant top predator Prestosuchus chiniquensis (Pseudosuchia: Loricata) from the Triassic of Southern Brazil, with phylogenetic remarks". Historical Biology: 1–20. doi:10.1080/08912963.2018.1559841. ISSN 0891-2963.
  58. Rodolfo Salas-Gismondi; Jorge W. Moreno-Bernal; Torsten M. Scheyer; Marcelo R. Sánchez-Villagra; Carlos Jaramillo (2018). "New Miocene Caribbean gavialoids and patterns of longirostry in crocodylians". Journal of Systematic Palaeontology. 17 (12): 1049–1075. doi:10.1080/14772019.2018.1495275.
  59. Jorgo Ristevski; Mark T. Young; Marco Brandalise de Andrade; Alexander K. Hastings (2018). "A new species of Anteophthalmosuchus (Crocodylomorpha, Goniopholididae) from the Lower Cretaceous of the Isle of Wight, United Kingdom, and a review of the genus". Cretaceous Research. 84: 340–383. doi:10.1016/j.cretres.2017.11.008.
  60. Rodolfo A. Coria; Francisco Ortega; Andrea B. Arcucci; Philip J. Currie (2019). "A new and complete peirosaurid (Crocodyliformes, Notosuchia) from Sierra Barrosa (Santonian, Upper Cretaceous) of the Neuquén Basin, Argentina". Cretaceous Research. 95: 89–105. doi:10.1016/j.cretres.2018.11.008.
  61. Agustín G. Martinelli; Thiago S. Marinho; Fabiano V. Iori; Luiz Carlos B. Ribeiro (2018). "The first Caipirasuchus (Mesoeucrocodylia, Notosuchia) from the Late Cretaceous of Minas Gerais, Brazil: new insights on sphagesaurid anatomy and taxonomy". PeerJ. 6: e5594. doi:10.7717/peerj.5594. PMC 6129144. PMID 30202663.
  62. Chun Li; Xiao-chun Wu; Scott Rufolo (2019). "A new crocodyloid (Eusuchia: Crocodylia) from the Upper Cretaceous of China". Cretaceous Research. 94: 25–39. doi:10.1016/j.cretres.2018.09.015.
  63. L.S. Filippi; F. Barrios; A.C. Garrido (2018). "A new peirosaurid from the Bajo de la Carpa Formation (Upper Cretaceous, Santonian) of Cerro Overo, Neuquén, Argentina". Cretaceous Research. 83: 75–83. doi:10.1016/j.cretres.2017.10.021.
  64. Attila Ősi; Mark T. Young; András Galácz; Márton Rabi (2018). "A new large-bodied thalattosuchian crocodyliform from the Lower Jurassic (Toarcian) of Hungary, with further evidence of the mosaic acquisition of marine adaptations in Metriorhynchoidea". PeerJ. 6: e4668. doi:10.7717/peerj.4668. PMC 5949208. PMID 29761038.
  65. Jair I. Barrientos-Lara; Jesús Alvarado-Ortega; Marta S. Fernández (2018). "The marine crocodile Maledictosuchus (Thalattosuchia, Metriorhynchidae) from the Kimmeridgian deposits of Tlaxiaco, Oaxaca, southern Mexico". Journal of Vertebrate Paleontology. 38 (4): (1)–(14). doi:10.1080/02724634.2018.1478419.
  66. Richard J. Butler; Sterling J. Nesbitt; Alan J. Charig; David J. Gower; Paul M. Barrett (2018). "Mandasuchus tanyauchen, gen. et sp. nov., a pseudosuchian archosaur from the Manda Beds (?Middle Triassic) of Tanzania". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 96–121. doi:10.1080/02724634.2017.1343728.
  67. Marcel B. Lacerda; Marco A. G. de França; Cesar L. Schultz (2018). "A new erpetosuchid (Pseudosuchia, Archosauria) from the Middle–Late Triassic of Southern Brazil". Zoological Journal of the Linnean Society. 184 (3): 804–824. doi:10.1093/zoolinnean/zly008.
  68. Octávio Mateus; Eduardo Puértolas-Pascual; Pedro M. Callapez (2018). "A new eusuchian crocodylomorph from the Cenomanian (Late Cretaceous) of Portugal reveals novel implications on the origin of Crocodylia". Zoological Journal of the Linnean Society. 186 (2): 501–528. doi:10.1093/zoolinnean/zly064.
  69. Paula Bona; Martín D. Ezcurra; Francisco Barrios; María V. Fernandez Blanco (2018). "A new Palaeocene crocodylian from southern Argentina sheds light on the early history of caimanines". Proceedings of the Royal Society B: Biological Sciences. 285 (1885): 20180843. doi:10.1098/rspb.2018.0843. PMC 6125902. PMID 30135152.
  70. André E. Piacentini Pinheiro; Paulo Victor Luiz Gomes da Costa Pereira; Rafael G. de Souza; Arthur S. Brum; Ricardo T. Lopes; Alessandra S. Machado; Lílian P. Bergqvist; Felipe M. Simbras (2018). "Reassessment of the enigmatic crocodyliform "Goniopholis" paulistanus Roxo, 1936: Historical approach, systematic, and description by new materials". PLOS ONE. 13 (8): e0199984. Bibcode:2018PLoSO..1399984P. doi:10.1371/journal.pone.0199984. PMC 6070184. PMID 30067779.
  71. Foster, J. (2018). "A new atoposaurid crocodylomorph from the Morrison Formation (Upper Jurassic) of Wyoming, USA". Geology of the Intermountain West. 5: 287–295. doi:10.31711/giw.v5i0.32. ISSN 2380-7601.
  72. Sara Saber; Joseph J.W. Sertich; Hesham M. Sallam; Khaled A. Ouda; Patrick M. O'Connor; Erik R. Seiffert (2018). "An enigmatic crocodyliform from the Upper Cretaceous Quseir Formation, central Egypt". Cretaceous Research. 90: 174–184. doi:10.1016/j.cretres.2018.04.004.
  73. Roger B. J. Benson; Gene Hunt; Matthew T. Carrano; Nicolás Campione (2018). "Cope's rule and the adaptive landscape of dinosaur body size evolution". Palaeontology. 61 (1): 13–48. doi:10.1111/pala.12329.
  74. Ciara O’Donovan; Andrew Meade; Chris Venditti (2018). "Dinosaurs reveal the geographical signature of an evolutionary radiation" (PDF). Nature Ecology & Evolution. 2 (3): 452–458. doi:10.1038/s41559-017-0454-6. PMID 29403079.
  75. Jonathan P. Tennant; Alfio Alessandro Chiarenza; Matthew Baron (2018). "How has our knowledge of dinosaur diversity through geologic time changed through research history?". PeerJ. 6: e4417. doi:10.7717/peerj.4417. PMC 5822849. PMID 29479504.
  76. Loredana Macaluso; Emanuel Tschopp (2018). "Evolutionary changes in pubic orientation in dinosaurs are more strongly correlated with the ventilation system than with herbivory". Palaeontology. 61 (5): 703–719. doi:10.1111/pala.12362.
  77. Shiro Egawa; Daisuke Saito; Gembu Abe; Koji Tamura (2018). "Morphogenetic mechanism of the acquisition of the dinosaur-type acetabulum". Royal Society Open Science. 5 (10): 180604. Bibcode:2018RSOS....580604E. doi:10.1098/rsos.180604. PMC 6227947. PMID 30473817.
  78. Kohei Tanaka; Darla K. Zelenitsky; François Therrien; Yoshitsugu Kobayashi (2018). "Nest substrate reflects incubation style in extant archosaurs with implications for dinosaur nesting habits". Scientific Reports. 8 (1): Article number 3170. Bibcode:2018NatSR...8.3170T. doi:10.1038/s41598-018-21386-x. PMC 5854591. PMID 29545620.
  79. Jasmina Wiemann; Tzu-Ruei Yang; Mark A. Norell (2018). "Dinosaur egg colour had a single evolutionary origin". Nature. 563 (7732): 555–558. Bibcode:2018Natur.563..555W. doi:10.1038/s41586-018-0646-5. PMID 30464264.
  80. Matthew D. Shawkey; Liliana D’Alba (2019). "Egg pigmentation probably has an early archosaurian origin". Nature. 570 (7761): E43–E45. Bibcode:2019Natur.570E..43S. doi:10.1038/s41586-019-1282-4. PMID 31217602.
  81. Jasmina Wiemann; Tzu-Ruei Yang; Mark A. Norell (2019). "Reply to: Egg pigmentation probably has an archosaurian origin". Nature. 570 (7761): E46–E50. Bibcode:2019Natur.570E..46W. doi:10.1038/s41586-019-1283-3. PMID 31217604.
  82. Fiona L. Gill; Jürgen Hummel; A. Reza Sharifi; Alexandra P. Lee; Barry H. Lomax (2018). "Diets of giants: the nutritional value of sauropod diet during the Mesozoic". Palaeontology. 61 (5): 647–658. doi:10.1111/pala.12385. PMC 6099296. PMID 30147151.
  83. Massimo Bernardi; Piero Gianolla; Fabio Massimo Petti; Paolo Mietto; Michael J. Benton (2018). "Dinosaur diversification linked with the Carnian Pluvial Episode". Nature Communications. 9 (1): Article number 1499. Bibcode:2018NatCo...9.1499B. doi:10.1038/s41467-018-03996-1. PMC 5902586. PMID 29662063.
  84. Michael J. Benton; Massimo Bernardi; Cormac Kinsella (2018). "The Carnian Pluvial Episode and the origin of dinosaurs". Journal of the Geological Society. 175 (6): 1019–1026. Bibcode:2018JGSoc.175.1019B. doi:10.1144/jgs2018-049.
  85. Chase D. Brownstein (2018). "The biogeography and ecology of the Cretaceous non-avian dinosaurs of Appalachia". Palaeontologia Electronica. 21 (1): 1–56. doi:10.26879/801.
  86. Markus Lambertz; Filippo Bertozzo; P. Martin Sander (2018). "Bone histological correlates for air sacs and their implications for understanding the origin of the dinosaurian respiratory system". Biology Letters. 14 (1): 20170514. doi:10.1098/rsbl.2017.0514. PMC 5803587. PMID 29298825.
  87. Sam M. Slater; Charles H. Wellman; Michael Romano; Vivi Vajda (2018). "Dinosaur-plant interactions within a Middle Jurassic ecosystem—palynology of the Burniston Bay dinosaur footprint locality, Yorkshire, UK". Palaeobiodiversity and Palaeoenvironments. 98 (1): 139–151. doi:10.1007/s12549-017-0309-9.
  88. Claudia Inés Serrano-Brañas; Belinda Espinosa-Chávez; Augusta Maccracken (2018). "Insect damage in dinosaur bones from the Cerro del Pueblo Formation (Late Cretaceous, Campanian) Coahuila, Mexico". Journal of South American Earth Sciences. 86: 353–365. Bibcode:2018JSAES..86..353S. doi:10.1016/j.jsames.2018.07.002.
  89. Akhil Rampersadh; Emese M. Bordy; Lara Sciscio; Miengah Abrahams (2018). "Dinosaur behaviour in an Early Jurassic palaeoecosystem – uppermost Elliot Formation, Ha Nohana, Lesotho". Annales Societatis Geologorum Poloniae. 88 (2): 163–179. doi:10.14241/asgp.2018.010.
  90. Paige E. dePolo; Stephen L. Brusatte; Thomas J. Challands; Davide Foffa; Dugald A. Ross; Mark Wilkinson; Hong-yu Yi (2018). "A sauropod-dominated tracksite from Rubha nam Brathairean (Brothers' Point), Isle of Skye, Scotland". Scottish Journal of Geology. 54 (1): 1–12. doi:10.1144/sjg2017-016. hdl:20.500.11820/eae5099d-3595-44e3-9996-f3cf6ce7d559.
  91. Yuong-Nam Lee; Hang-Jae Lee; Sang-Young Han; Euijun Park; Chan Hee Lee (2018). "A new dinosaur tracksite from the Lower Cretaceous Sanbukdong Formation of Gunsan City, South Korea". Cretaceous Research. 91: 208–216. doi:10.1016/j.cretres.2018.06.003.
  92. Anthony R. Fiorillo; Paul J. McCarthy; Yoshitsugu Kobayashi; Carla S. Tomsich; Ronald S. Tykoski; Yuong-Nam Lee; Tomonori Tanaka; Christopher R. Noto (2018). "An unusual association of hadrosaur and therizinosaur tracks within Late Cretaceous rocks of Denali National Park, Alaska". Scientific Reports. 8 (1): Article number: 11706. Bibcode:2018NatSR...811706F. doi:10.1038/s41598-018-30110-8. PMC 6076232. PMID 30076347.
  93. Martin G. Lockley; Jianjun Li; Lida Xing; Bin Guo; Masaki Matsukawa (2018). "Large theropod and small sauropod trackmakers from the Lower Cretaceous Jingchuan Formation, Inner Mongolia, China". Cretaceous Research. 92: 150–167. doi:10.1016/j.cretres.2018.07.007.
  94. Diego Castanera; Matteo Belvedere; Daniel Marty; Géraldine Paratte; Marielle Lapaire-Cattin; Christel Lovis; Christian A. Meyer (2018). "A walk in the maze: variation in Late Jurassic tridactyl dinosaur tracks from the Swiss Jura Mountains (NW Switzerland)". PeerJ. 6: e4579. doi:10.7717/peerj.4579. PMC 5885975. PMID 29629243.
  95. Brian F. Platt; Celina A. Suarez; Stephen K. Boss; Malcolm Williamson; Jackson Cothren; Jo Ann C. Kvamme (2018). "LIDAR-based characterization and conservation of the first theropod dinosaur trackways from Arkansas, USA". PLOS ONE. 13 (1): e0190527. Bibcode:2018PLoSO..1390527P. doi:10.1371/journal.pone.0190527. PMC 5749850. PMID 29293618.
  96. Lida Xing; Martin G. Lockley; Hendrik Klein; Rong Zeng; Sifu Cai; Xiuchun Luo; Chen Li (2018). "Theropod assemblages and a new ichnotaxon Gigandipus chiappei ichnosp. nov. from the Jiaguan Formation, Lower Cretaceous of Guizhou Province, China". Geoscience Frontiers. 9 (6): 1745–1754. doi:10.1016/j.gsf.2017.12.012.
  97. Tingting Zheng; Yi Bai; Qiang Wang; Xufeng Zhu; Kaiyong Fang; Yuan Yao; Yongqiang Zhao; Xiaolin Wang (2018). "A new ootype of dinosaur egg (Faveoloolithidae: Duovallumoolithus shangdanensis oogen. et oosp. nov.) from the Late Cretaceous in the Shangdan Basin, Shaanxi Province, China". Acta Geologica Sinica (English Edition). 92 (3): 897–903. doi:10.1111/1755-6724.13581.
  98. Shukang Zhang; Tzu-Ruei Yang; Zhengqi Li; Yongguo Hu (2018). "New dinosaur egg material from Yunxian, Hubei Province, China resolves the classification of dendroolithid eggs". Acta Palaeontologica Polonica. 63 (4): 671–678. doi:10.4202/app.00523.2018.
  99. Tzu-Ruei Yang; Ying-Hsuan Chen; Jasmina Wiemann; Beate Spiering; P. Martin Sander (2018). "Fossil eggshell cuticle elucidates dinosaur nesting ecology". PeerJ. 6: e5144. doi:10.7717/peerj.5144. PMC 6037156. PMID 30002976.
  100. David W.E. Hone; Daniel J. Chure (2018). "Difficulties in assigning trace makers from theropodan bite marks: an example from a young diplodocoid sauropod". Lethaia. 51 (3): 456–466. doi:10.1111/let.12267.
  101. Sebastian G. Dalman; Spencer G. Lucas (2018). "New evidence for predatory behavior in tyrannosaurid dinosaurs from the Kirtland Formation (Late Cretaceous, Campanian), northwestern New Mexico". New Mexico Museum of Natural History and Science Bulletin. 79: 113–124.
  102. Angelica Torices; Ryan Wilkinson; Victoria M. Arbour; Jose Ignacio Ruiz-Omeñaca; Philip J. Currie (2018). "Puncture-and-pull biomechanics in the teeth of predatory coelurosaurian dinosaurs". Current Biology. 28 (9): 1467–1474.e2. doi:10.1016/j.cub.2018.03.042. PMID 29706515.
  103. Evan T. Saitta; Rebecca Gelernte; Jakob Vinther (2018). "Additional information on the primitive contour and wing feathering of paravian dinosaurs". Palaeontology. 61 (2): 273–288. doi:10.1111/pala.12342. hdl:1983/61351c6d-1517-4101-bac8-50cbb733761d.
  104. Hang-Jae Lee; Yuong-Nam Lee; Thomas L. Adams; Philip J. Currie; Yoshitsugu Kobayashi; Louis L. Jacobs; Eva B. Koppelhus (2018). "Theropod trackways associated with a Gallimimus foot skeleton from the Nemegt Formation, Mongolia". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 160–167. Bibcode:2018PPP...494..160L. doi:10.1016/j.palaeo.2017.10.020.
  105. Lida Xing; Nasrollah Abbassi; Martin G. Lockley (2018). "Enigmatic didactyl tracks from the Jurassic of Iran". Historical Biology: An International Journal of Paleobiology. 30 (8): 1132–1138. doi:10.1080/08912963.2017.1339700.
  106. Lida Xing; Martin G. Lockley; Ying Guo; Hendrik Klein; Junqiang Zhang; Li Zhang; W. Scott Persons IV; Anthony Romilio; Yonggang Tang; Xiaoli Wang (2018). "Multiple parallel deinonychosaurian trackways from a diverse dinosaur track assemblage of the Lower Cretaceous Dasheng Group of Shandong Province, China" (PDF). Cretaceous Research. 90: 40–55. doi:10.1016/j.cretres.2018.04.005.
  107. Kyung Soo Kim; Jong Deock Lim; Martin G. Lockley; Lida Xing; Dong Hee Kim; Laura Piñuela; Anthony Romilio; Jae Sang Yoo; Jin Ho Kim; Jaehong Ahn (2018). "Smallest known raptor tracks suggest microraptorine activity in lakeshore setting". Scientific Reports. 8 (1): Article number 16908. Bibcode:2018NatSR...816908K. doi:10.1038/s41598-018-35289-4. PMC 6237872. PMID 30442900.
  108. P. J. Bishop; D. F. Graham; L. P. Lamas; J. R. Hutchinson; J. Rubenson; J. A. Hancock; R. S. Wilson; S. A. Hocknull; R. S. Barrett; D. G. Lloyd; C. J. Clemente (2018). "The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs". PLOS ONE. 13 (2): e0192172. Bibcode:2018PLoSO..1392172B. doi:10.1371/journal.pone.0192172. PMC 5821450. PMID 29466362.
  109. Peter J. Bishop; Scott A. Hocknull; Christofer J. Clemente; John R. Hutchinson; Andrew A. Farke; Belinda R. Beck; Rod S. Barrett; David G. Lloyd (2018). "Cancellous bone and theropod dinosaur locomotion. Part I—an examination of cancellous bone architecture in the hindlimb bones of theropods". PeerJ. 6: e5778. doi:10.7717/peerj.5778. PMC 6215452. PMID 30402347.
  110. Peter J. Bishop; Scott A. Hocknull; Christofer J. Clemente; John R. Hutchinson; Rod S. Barrett; David G. Lloyd (2018). "Cancellous bone and theropod dinosaur locomotion. Part II—a new approach to inferring posture and locomotor biomechanics in extinct tetrapod vertebrates". PeerJ. 6: e5779. doi:10.7717/peerj.5779. PMC 6215447. PMID 30402348.
  111. Peter J. Bishop; Scott A. Hocknull; Christofer J. Clemente; John R. Hutchinson; Andrew A. Farke; Rod S. Barrett; David G. Lloyd (2018). "Cancellous bone and theropod dinosaur locomotion. Part III—Inferring posture and locomotor biomechanics in extinct theropods, and its evolution on the line to birds". PeerJ. 6: e5777. doi:10.7717/peerj.5777. PMC 6215443. PMID 30402346.
  112. A. Hassler; J. E. Martin; R. Amiot; T. Tacail; F. Arnaud Godet; R. Allain; V. Balter (2018). "Calcium isotopes offer clues on resource partitioning among Cretaceous predatory dinosaurs". Proceedings of the Royal Society B: Biological Sciences. 285 (1876): 20180197. doi:10.1098/rspb.2018.0197. PMC 5904318. PMID 29643213.
  113. Daniel E. Barta; Sterling J. Nesbitt; Mark A. Norell (2018). "The evolution of the manus of early theropod dinosaurs is characterized by high inter- and intraspecific variation". Journal of Anatomy. 232 (1): 80–104. doi:10.1111/joa.12719. PMC 5735062. PMID 29114853.
  114. C. T. Griffin (2018). "Developmental patterns and variation among early theropods". Journal of Anatomy. 232 (4): 604–640. doi:10.1111/joa.12775. PMC 5835796. PMID 29363129.
  115. Rafael Delcourt (2018). "Ceratosaur palaeobiology: new insights on evolution and ecology of the southern rulers". Scientific Reports. 8 (1): Article number 9730. Bibcode:2018NatSR...8.9730D. doi:10.1038/s41598-018-28154-x. PMC 6021374. PMID 29950661.
  116. Arthur Souza Brum; Elaine Batista Machado; Diogenes de Almeida Campos; Alexander Wilhelm Armin Kellner (2018). "Description of uncommon pneumatic structures of a noasaurid (Theropoda, Dinosauria) cervical vertebra to the Bauru Group (Upper Cretaceous), Brazil". Cretaceous Research. 85: 193–206. doi:10.1016/j.cretres.2017.10.012.
  117. Marcos A.F. Sales; Isabel A.P. de Oliveira; Cesar L. Schultz (2018). "The oldest abelisaurid record from Brazil and the palaeobiogeographic significance of mid-Cretaceous dinosaur assemblages from northern South America". Palaeogeography, Palaeoclimatology, Palaeoecology. 508: 107–115. Bibcode:2018PPP...508..107S. doi:10.1016/j.palaeo.2018.07.024.
  118. Ariana Paulina-Carabajal; Leonardo Filippi (2018). "Neuroanatomy of the abelisaurid theropod Viavenator: The most complete reconstruction of a cranial endocast and inner ear for a South American representative of the clade". Cretaceous Research. 83: 84–94. doi:10.1016/j.cretres.2017.06.013.
  119. Leonardo S. Filippi; Ariel H. Méndez; Federico A. Gianechini; Rubén D. Juárez Valieri; Alberto C. Garrido (2018). "Osteology of Viavenator exxoni (Abelisauridae; Furileusauria) from the Bajo de la Carpa Formation, NW Patagonia, Argentina". Cretaceous Research. 83: 95–119. doi:10.1016/j.cretres.2017.07.019. hdl:11336/75315.
  120. Rafael Delcourt; Orlando Nelson Grillo (2018). "Reassessment of a fragmentary maxilla attributed to Carcharodontosauridae from Presidente Prudente Formation, Brazil". Cretaceous Research. 84: 515–524. doi:10.1016/j.cretres.2017.09.008.
  121. Oliver W.M. Rauhut; Laura Piñuela; Diego Castanera; José-Carlos García-Ramos; Irene Sánchez Cela (2018). "The largest European theropod dinosaurs: remains of a gigantic megalosaurid and giant theropod tracks from the Kimmeridgian of Asturias, Spain". PeerJ. 6: e4963. doi:10.7717/peerj.4963. PMC 6035862. PMID 30002951.
  122. Tito Aureliano; Aline M. Ghilardi; Pedro V. Buck; Matteo Fabbri; Adun Samathi; Rafael Delcourt; Marcelo A. Fernandes; Martin Sander (2018). "Semi-aquatic adaptations in a spinosaur from the Lower Cretaceous of Brazil". Cretaceous Research. 90: 283–295. doi:10.1016/j.cretres.2018.04.024.
  123. Elisabete Malafaia; José Miguel Gasulla; Fernando Escaso; Iván Narváez; José Luis Sanz; Francisco Ortega (2018). "New spinosaurid (Theropoda, Megalosauroidea) remains from the Arcillas de Morella Formation (upper Barremian) of Morella, Spain". Cretaceous Research. 92: 174–183. doi:10.1016/j.cretres.2018.08.006.
  124. Simone Maganuco; Cristiano Dal Sasso (2018). "The smallest biggest theropod dinosaur: a tiny pedal ungual of a juvenile Spinosaurus from the Cretaceous of Morocco". PeerJ. 6: e4785. doi:10.7717/peerj.4785. PMC 5984586. PMID 29868253.
  125. Donald M. Henderson (2018). "A buoyancy, balance and stability challenge to the hypothesis of a semi-aquatic Spinosaurus Stromer, 1915 (Dinosauria: Theropoda)". PeerJ. 6: e5409. doi:10.7717/peerj.5409. PMC 6098948. PMID 30128195.
  126. Elena Cuesta; Daniel Vidal; Francisco Ortega; José L. Sanz (2018). "The cranial osteology of Concavenator corcovatus (Theropoda; Carcharodontosauria) from the Lower Cretaceous of Spain". Cretaceous Research. 91: 176–194. doi:10.1016/j.cretres.2018.06.007.
  127. Elena Cuesta; Francisco Ortega; José Luis Sanz (2018). "Appendicular osteology of Concavenator corcovatus (Theropoda; Carcharodontosauridae; Early Cretaceous; Spain)". Journal of Vertebrate Paleontology. 38 (4): (1)–(24). doi:10.1080/02724634.2018.1485153.
  128. Carlos Roberto dos Anjos Candeiro; Stephen Louis Brusatte; Luciano Vidal; Paulo Victor Luiz Gomes da Costa Pereira (2018). "Paleobiogeographic evolution and distribution of Carcharodontosauridae (Dinosauria, Theropoda) during the middle Cretaceous of North Africa". Papéis Avulsos de Zoologia. 58: e20185829. doi:10.11606/1807-0205/2018.58.29.
  129. Chase D. Brownstein (2018). "The distinctive theropod assemblage of the Ellisdale site of New Jersey and its implications for North American dinosaur ecology and evolution during the Cretaceous". Journal of Paleontology. 92 (6): 1115–1129. doi:10.1017/jpa.2018.42.
  130. J. A. Frederickson; M. H. Engel; R. L. Cifelli (2018). "Niche partitioning in theropod dinosaurs: diet and habitat preference in predators from the uppermost Cedar Mountain Formation (Utah, U.S.A.)". Scientific Reports. 8 (1): Article number 17872. Bibcode:2018NatSR...817872F. doi:10.1038/s41598-018-35689-6. PMC 6294763. PMID 30552378.
  131. Alexis M. Aranciaga Rolando; Federico Brissón Egli; Marcos A.F. Sales; Agustín G. Martinelli; Juan I. Canale; Martín D. Ezcurra (2018). "A supposed Gondwanan oviraptorosaur from the Albian of Brazil represents the oldest South American megaraptoran". Cretaceous Research. 84: 107–119. doi:10.1016/j.cretres.2017.10.019.
  132. Rafael Delcourt; Orlando Nelson Grillo (2018). "Tyrannosauroids from the Southern Hemisphere: Implications for biogeography, evolution, and taxonomy". Palaeogeography, Palaeoclimatology, Palaeoecology. 511: 379–387. Bibcode:2018PPP...511..379D. doi:10.1016/j.palaeo.2018.09.003.
  133. Martin Kundrát; Xing Xu; Martina Hančová; Andrej Gajdoš; Yu Guo; Defeng Chen (2018). "Evolutionary disparity in the endoneurocranial configuration between small and gigantic tyrannosauroids". Historical Biology: An International Journal of Paleobiology. 32 (5): 620–634. doi:10.1080/08912963.2018.1518442.
  134. Chase Doran Brownstein (2018). "A tyrannosauroid from the lower Cenomanian of New Jersey and its evolutionary and biogeographic implications". Bulletin of the Peabody Museum of Natural History. 59 (1): 95–105. doi:10.3374/014.058.0210.
  135. Chase Brownstein (2018). "Large basal tyrannosauroids from the Maastrichtian and terrestrial vertebrate diversity in the shadow of the K-Pg extinction". The Mosasaur. The Journal of the Delaware Valley Paleontological Society. X: 105–115.
  136. Chase D. Brownstein (2018). "A tyrannosauroid tibia from the Navesink Formation of New Jersey and its biogeographic and evolutionary implications for North American tyrannosauroids". Cretaceous Research. 85: 309–318. doi:10.1016/j.cretres.2018.01.005.
  137. Matthew A. McLain; David Nelsen; Keith Snyder; Christopher T. Griffin; Bethania Siviero; Leonard R. Brand; Arthur V. Chadwick (2018). "Tyrannosaur cannibalism: a case of a tooth-traced tyrannosaurid bone in the Lance Formation (Maastrichtian), Wyoming". PALAIOS. 33 (4): 164–173. Bibcode:2018Palai..33..164M. doi:10.2110/palo.2017.076.
  138. Karl T. Bates; Peter L. Falkingham (2018). "The importance of muscle architecture in biomechanical reconstructions of extinct animals: a case study using Tyrannosaurus rex" (PDF). Journal of Anatomy. 233 (5): 625–635. doi:10.1111/joa.12874. PMID 30129185.
  139. Chase Doran Brownstein (2017). "Description of Arundel Clay ornithomimosaur material and a reinterpretation of Nedcolbertia justinhofmanni as an "Ostrich Dinosaur": biogeographic implications". PeerJ. 5: e3110. doi:10.7717/peerj.3110. PMC 5345386. PMID 28286718.
  140. Bradley McFeeters; Michael J. Ryan; Thomas M. Cullen (2018). "Positional variation in pedal unguals of North American ornithomimids (Dinosauria, Theropoda): a response to Brownstein (2017)". Vertebrate Anatomy Morphology Palaeontology. 6: 60–67. doi:10.18435/vamp29283.
  141. Chase Doran Brownstein (2018). "Rebuttal of McFeeters, Ryan and Cullen, 2018, 'Positional variation in pedal unguals of North American ornithomimids (Dinosauria, Theropoda): A Response to Brownstein (2017)'". Vertebrate Anatomy Morphology Palaeontology. 6: 68–72. doi:10.18435/vamp29340.
  142. Bradley McFeeters; Michael J. Ryan; Thomas M. Cullen (2018). "Response to Brownstein (2018) 'Rebuttal of McFeeters, Ryan and Cullen, 2018'". Vertebrate Anatomy Morphology Palaeontology. 6: 73–74. doi:10.18435/vamp29343.
  143. Tsogtbaatar Chinzorig; Yoshitsugu Kobayashi; Khishigjav Tsogtbaatar; Philip J. Currie; Ryuji Takasaki; Tomonori Tanaka; Masaya Iijima; Rinchen Barsbold (2018). "Ornithomimosaurs from the Nemegt Formation of Mongolia: manus morphological variation and diversity". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 91–100. Bibcode:2018PPP...494...91C. doi:10.1016/j.palaeo.2017.10.031.
  144. M.H. Schweitzer; J.A. Watt; R. Avci; L. Knapp; L. Chiappe; M. Norell; M. Marshall (1999). "Beta‐keratin specific immunological reactivity in feather‐like structures of the Cretaceous alvarezsaurid, Shuvuuia deserti". Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 285 (2): 146–157. doi:10.1002/(SICI)1097-010X(19990815)285:2<146::AID-JEZ7>3.0.CO;2-A. PMID 10440726.
  145. Evan T. Saitta; Ian Fletcher; Peter Martin; Michael Pittman; Thomas G. Kaye; Lawrence D. True; Mark A. Norell; Geoffrey D. Abbott; Roger E. Summons; Kirsty Penkman; Jakob Vinther (2018). "Preservation of feather fibers from the Late Cretaceous dinosaur Shuvuuia deserti raises concern about immunohistochemical analyses on fossils". Organic Geochemistry. 125: 142–151. doi:10.1016/j.orggeochem.2018.09.008.
  146. Tian-long Ren; Yu-ye Wang; Zhen-guo Ning; Cai-zhi Shen; Xuan-yu Zhou; Kohei Tanaka; Yong-bo Huang; Cheng-jun Zhang; Jun-chang Lü (2018). "The first discovery of dinosaur eggs in Laixi area of Qingdao, Shandong Province, and sedimentary environmental analysis". Acta Geoscientica Sinica. 39 (2): 241–249. doi:10.3975/cagsb.2018.020501.
  147. David K. Smith; R. Kent Sanders; Douglas G. Wolfe (2018). "A re-evaluation of the basicranial soft tissues and pneumaticity of the therizinosaurian Nothronychus mckinleyi (Theropoda; Maniraptora)". PLOS ONE. 13 (7): e0198155. Bibcode:2018PLoSO..1398155S. doi:10.1371/journal.pone.0198155. PMC 6067709. PMID 30063717.
  148. Kohei Tanaka; Darla K. Zelenitsky; Junchang Lü; Christopher L. DeBuhr; Laiping Yi; Songhai Jia; Fang Ding; Mengli Xia; Di Liu; Caizhi Shen; Rongjun Chen (2018). "Incubation behaviours of oviraptorosaur dinosaurs in relation to body size". Biology Letters. 14 (5): 20180135. doi:10.1098/rsbl.2018.0135. PMC 6012691. PMID 29769301.
  149. Yaser Saffar Talori; Yun-Fei Liu; Jing-Shan Zhao; Corwin Sullivan; Jingmai K. O’Connor; Zhi-Heng Li (2018). "Winged forelimbs of the small theropod dinosaur Caudipteryx could have generated small aerodynamic forces during rapid terrestrial locomotion". Scientific Reports. 8 (1): Article number 17854. Bibcode:2018NatSR...817854T. doi:10.1038/s41598-018-35966-4. PMC 6294793. PMID 30552395.
  150. Shuo Wang; Qiyue Zhang; Rui Yang (2018). "Reevaluation of the dentary structures of caenagnathid oviraptorosaurs (Dinosauria, Theropoda)". Scientific Reports. 8 (1): Article number 391. Bibcode:2018NatSR...8..391W. doi:10.1038/s41598-017-18703-1. PMC 5762635. PMID 29321606.
  151. Gregory F. Funston; Philip J. Currie (2018). "A small caenagnathid tibia from the Horseshoe Canyon Formation (Maastrichtian): Implications for growth and lifestyle in oviraptorosaurs". Cretaceous Research. 92: 220–230. doi:10.1016/j.cretres.2018.08.020.
  152. Mark A. Norell; Amy M. Balanoff; Daniel E. Barta; Gregory M. Erickson (2018). "A second specimen of Citipati osmolskae associated with a nest of eggs from Ukhaa Tolgod, Omnogov Aimag, Mongolia". American Museum Novitates. 3899 (3899): 1–44. doi:10.1206/3899.1. hdl:2246/6858.
  153. Amy M. Balanoff; Mark A. Norell; Aneila V.C. Hogan; Gabriel S. Bever (2018). "The endocranial cavity of oviraptorosaur dinosaurs and the increasingly complex, deep history of the avian brain". Brain, Behavior and Evolution. 91 (3): 125–135. doi:10.1159/000488890. PMID 30099460.
  154. Andrea Cau; Daniel Madzia (2018). "Redescription and affinities of Hulsanpes perlei (Dinosauria, Theropoda) from the Upper Cretaceous of Mongolia". PeerJ. 6: e4868. doi:10.7717/peerj.4868. PMC 5978397. PMID 29868277.
  155. Fernando E. Novas; Federico Brissón Egli; Federico L. Agnolin; Federico A. Gianechini; Ignacio Cerda (2018). "Postcranial osteology of a new specimen of Buitreraptor gonzalezorum (Theropoda, Coelurosauria)". Cretaceous Research. 83: 127–167. doi:10.1016/j.cretres.2017.06.003.
  156. Matías J. Motta; Federico Brissón Egli; Fernando E. Novas (2018). "Tail anatomy of Buitreraptor gonzalezorum (Theropoda, Unenlagiidae) and comparisons with other basal paravians". Cretaceous Research. 83: 168–181. doi:10.1016/j.cretres.2017.09.004.
  157. Federico A. Gianechini; Peter J. Makovicky; Sebastián Apesteguía; Ignacio Cerda (2018). "Postcranial skeletal anatomy of the holotype and referred specimens of Buitreraptor gonzalezorum Makovicky, Apesteguía and Agnolín 2005 (Theropoda, Dromaeosauridae), from the Late Cretaceous of Patagonia". PeerJ. 6: e4558. doi:10.7717/peerj.4558. PMC 5875404. PMID 29607264.
  158. Chase Brownstein (2018). "A giant dromaeosaurid from North Carolina". Cretaceous Research. 92: 1–7. doi:10.1016/j.cretres.2018.07.006.
  159. Ya-Lei Yin; Rui Pei; Chang-Fu Zhou (2018). "Cranial morphology of Sinovenator changii (Theropoda: Troodontidae) on the new material from the Yixian Formation of western Liaoning, China". PeerJ. 6: e4977. doi:10.7717/peerj.4977. PMC 6015489. PMID 29942679.
  160. David J. Varricchio; Martin Kundrát; Jason Hogan (2018). "An intermediate incubation period and primitive brooding in a theropod dinosaur". Scientific Reports. 8 (1): Article number 12454. Bibcode:2018NatSR...812454V. doi:10.1038/s41598-018-30085-6. PMC 6102251. PMID 30127534.
  161. Xiangqi Guo; Li Xu; Songhai Jia (2018). "Morphological and phylogenetic study based on new materials of Anchiornis huxleyi (Dinosauria, Theropoda) from Jianchang, western Liaoning, China". Acta Geologica Sinica (English Edition). 92 (1): 1–15. doi:10.1111/1755-6724.13491.
  162. Xiaoting Zheng; Xiaoli Wang; Corwin Sullivan; Xiaomei Zhang; Fucheng Zhang; Yan Wang; Feng Li; Xing Xu (2018). "Exceptional dinosaur fossils reveal early origin of avian-style digestion". Scientific Reports. 8 (1): Article number 14217. Bibcode:2018NatSR...814217Z. doi:10.1038/s41598-018-32202-x. PMC 6155034. PMID 30242170.
  163. Mario Bronzati; Roger B. J. Benson; Oliver W. M. Rauhut (2018). "Rapid transformation in the braincase of sauropod dinosaurs: integrated evolution of the braincase and neck in early sauropods?". Palaeontology. 61 (2): 289–302. doi:10.1111/pala.12344.
  164. Alejandro Otero (2018). "Forelimb musculature and osteological correlates in Sauropodomorpha (Dinosauria, Saurischia)". PLOS ONE. 13 (7): e0198988. Bibcode:2018PLoSO..1398988O. doi:10.1371/journal.pone.0198988. PMC 6033415. PMID 29975691.
  165. Ada J. Klinkhamer; Heinrich Mallison; Stephen F. Poropat; George H.K. Sinapius; Stephen Wroe (2018). "Three‐dimensional musculoskeletal modelling of the sauropodomorph hind limb: the effect of postural change on muscle leverage". The Anatomical Record. 301 (12): 2145–2163. doi:10.1002/ar.23950. PMID 30299598.
  166. Rodrigo T. Müller; Max C. Langer; Mario Bronzati; Cristian P. Pacheco; Sérgio F. Cabreira; Sérgio Dias-Da-Silva (2018). "Early evolution of sauropodomorphs: anatomy and phylogenetic relationships of a remarkably well-preserved dinosaur from the Upper Triassic of southern Brazil". Zoological Journal of the Linnean Society. 184 (4): 1187–1248. doi:10.1093/zoolinnean/zly009. S2CID 90215853.
  167. Júlio C.A. Marsola; Jonathas S. Bittencourt; Átila A.S. Da Rosa; Agustín G. Martinelli; Ana Maria Ribeiro; Jorge Ferigolo; Max C. Langer (2018). "New sauropodomorph and cynodont remains from the Late Triassic Sacisaurus site in southern Brazil and its stratigraphic position in the Norian Caturrita Formation". Acta Palaeontologica Polonica. 63 (4): 653–669. doi:10.4202/app.00492.2018.
  168. Mario Bronzati; Oliver W. M. Rauhut (2018). "Braincase redescription of Efraasia minor Huene, 1908 (Dinosauria: Sauropodomorpha) from the Late Triassic of Germany, with comments on the evolution of the sauropodomorph braincase". Zoological Journal of the Linnean Society. 182 (1): 173–224. doi:10.1093/zoolinnean/zlx029.
  169. Adam D. Marsh; Timothy B. Rowe (2018). "Anatomy and systematics of the sauropodomorph Sarahsaurus aurifontanalis from the Early Jurassic Kayenta Formation". PLOS ONE. 13 (10): e0204007. Bibcode:2018PLoSO..1304007M. doi:10.1371/journal.pone.0204007. PMC 6179219. PMID 30304035.
  170. Kimberley E.J. Chapelle; Jonah N. Choiniere (2018). "A revised cranial description of Massospondylus carinatus Owen (Dinosauria: Sauropodomorpha) based on computed tomographic scans and a review of cranial characters for basal Sauropodomorpha". PeerJ. 6: e4224. doi:10.7717/peerj.4224. PMC 5768178. PMID 29340238.
  171. Lida Xing; Bruce M. Rothschild; Patrick S. Randolph-Quinney; Yi Wang; Alexander H. Parkinson; Hao Ran (2018). "Possible bite-induced abscess and osteomyelitis in Lufengosaurus (Dinosauria: sauropodomorph) from the Lower Jurassic of the Yimen Basin, China". Scientific Reports. 8 (1): Article number 5045. Bibcode:2018NatSR...8.5045X. doi:10.1038/s41598-018-23451-x. PMC 5864883. PMID 29568005.
  172. Blair W. Mcphee; Jonah N. Choiniere (2018). "The osteology of Pulanesaura eocollum: implications for the inclusivity of Sauropoda (Dinosauria)". Zoological Journal of the Linnean Society. 182 (4): 830–861. doi:10.1093/zoolinnean/zlx074.
  173. Emil Krupandan; Anusuya Chinsamy‐Turan; Diego Pol (2018). "The long bone histology of the sauropodomorph, Antetonitrus ingenipes". The Anatomical Record. 301 (9): 1506–1518. doi:10.1002/ar.23898. PMID 30312030.
  174. Pia A. Viglietti; Paul M. Barrett; Tim J. Broderick; Darlington Munyikwa; Rowan MacNiven; Lucy Broderick; Kimberley Chapelle; Dave Glynn; Steve Edwards; Michel Zondo; Patricia Broderick; Jonah N. Choiniere (2018). "Stratigraphy of the Vulcanodon type locality and its implications for regional correlations within the Karoo Supergroup". Journal of African Earth Sciences. 137: 149–156. Bibcode:2018JAfES.137..149V. doi:10.1016/j.jafrearsci.2017.10.015.
  175. Cecily S.C. Nicholl; Philip D. Mannion; Paul M. Barrett (2018). "Sauropod dinosaur remains from a new Early Jurassic locality in the Central High Atlas of Morocco". Acta Palaeontologica Polonica. 63 (1): 147–157. doi:10.4202/app.00425.2017.
  176. Femke M. Holwerda; Diego Pol (2018). "Phylogenetic analysis of Gondwanan basal eusauropods from the Early-Middle Jurasic of Patagonia, Argentina". Spanish Journal of Palaeontology. 33 (2): 289–298. doi:10.7203/sjp.33.2.13604.
  177. Jun Wang; Yong Ye; Rui Pei; Yamin Tian; Chongqin Feng; Daran Zheng; Su-Chin Chang (2018). "Age of Jurassic basal sauropods in Sichuan, China: A reappraisal of basal sauropod evolution". GSA Bulletin. 130 (9–10): 1493–1500. Bibcode:2018GSAB..130.1493W. doi:10.1130/B31910.1.
  178. Xiao-Qin Zhang; Da-Qing Li; Yan Xie; Hai-Lu You (2018). "Redescription of the cervical vertebrae of the mamenchisaurid sauropod Xinjiangtitan shanshanesis Wu et al. 2013". Historical Biology: An International Journal of Paleobiology. 32 (6): 803–822. doi:10.1080/08912963.2018.1539970.
  179. Andrew J. Moore; Jinyou Mo; James M. Clark; Xing Xu (2018). "Cranial anatomy of Bellusaurus sui (Dinosauria: Eusauropoda) from the Middle-Late Jurassic Shishugou Formation of northwest China and a review of sauropod cranial ontogeny". PeerJ. 6: e4881. doi:10.7717/peerj.4881. PMC 5985764. PMID 29868283.
  180. D. Cary Woodruff; Thomas D. Carr; Glenn W. Storrs; Katja Waskow; John B. Scannella; Klara K. Nordén; John P. Wilson (2018). "The smallest diplodocid skull reveals cranial ontogeny and growth-related dietary changes in the largest dinosaurs". Scientific Reports. 8 (1): Article number 14341. Bibcode:2018NatSR...814341W. doi:10.1038/s41598-018-32620-x. PMC 6181913. PMID 30310088.
  181. Emanuel Tschopp; Octávio Mateus; Mark Norell (2018). "Complex overlapping joints between facial bones allowing limited anterior sliding movements of the snout in diplodocid sauropods". American Museum Novitates. 3911 (3911): 1–16. doi:10.1206/3911.1. hdl:2246/6913.
  182. Michael P. Taylor (2018). "Xenoposeidon is the earliest known rebbachisaurid sauropod dinosaur". PeerJ. 6: e5212. doi:10.7717/peerj.5212. PMC 6037143. PMID 30002991.
  183. Anthony Maltese; Emanuel Tschopp; Femke Holwerda; David Burnham (2018). "The real Bigfoot: a pes from Wyoming, USA is the largest sauropod pes ever reported and the northern-most occurrence of brachiosaurids in the Upper Jurassic Morrison Formation". PeerJ. 6: e5250. doi:10.7717/peerj.5250. PMC 6063209. PMID 30065867.
  184. Brennan Stettner; W. Scott Persons IV; Philip J. Currie (2018). "A giant sauropod footprint from the Nemegt Formation (Upper Cretaceous) of Mongolia". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 168–172. Bibcode:2018PPP...494..168S. doi:10.1016/j.palaeo.2017.10.027.
  185. Christian A. Meyer; Daniel Marty; Matteo Belvedere (2018). "Titanosaur trackways from the Late Cretaceous El Molino Formation of Bolivia (Cal Orck'o, Sucre)". Annales Societatis Geologorum Poloniae. 88 (2): 223–241. doi:10.14241/asgp.2018.018.
  186. Kristina Curry Rogers; Zoe Kulik (2018). "Osteohistology of Rapetosaurus krausei (Sauropoda: Titanosauria) from the Upper Cretaceous of Madagascar". Journal of Vertebrate Paleontology. 38 (4): (1)–(24). doi:10.1080/02724634.2018.1493689.
  187. E. Martín Hechenleitner; Lucas E. Fiorelli; Agustín G. Martinelli; Gerald Grellet-Tinner (2018). "Titanosaur dinosaurs from the Upper Cretaceous of La Rioja province, NW Argentina". Cretaceous Research. 85: 42–59. doi:10.1016/j.cretres.2018.01.006.
  188. E. Martín Hechenleitner; Jeremías R. A. Taborda; Lucas E. Fiorelli; Gerald Grellet-Tinner; Segundo R. Nuñez-Campero (2018). "Biomechanical evidence suggests extensive eggshell thinning during incubation in the Sanagasta titanosaur dinosaurs". PeerJ. 6: e4971. doi:10.7717/peerj.4971. PMC 6003389. PMID 29910984.
  189. Verónica Díez Díaz; Géraldine Garcia; Xabier Pereda Suberbiola; Benjamin Jentgen-Ceschino; Koen Stein; Pascal Godefroit; Xavier Valentin (2018). "The titanosaurian dinosaur Atsinganosaurus velauciensis (Sauropoda) from the Upper Cretaceous of southern France: New material, phylogenetic affinities, and palaeobiogeographical implications". Cretaceous Research. 91: 429–456. doi:10.1016/j.cretres.2018.06.015.
  190. Lucio M. Ibiricu; Rubén D. Martínez; Gabriel A. Casal (2018). "The pelvic and hindlimb myology of the basal titanosaur Epachthosaurus sciuttoi (Sauropoda: Titanosauria)". Historical Biology: An International Journal of Paleobiology. 32 (6): 773–788. doi:10.1080/08912963.2018.1535598.
  191. Bernardo J. Gonzàlez Riga; Philip D. Mannion; Stephen F. Poropat; Leonardo D. Ortiz David; Juan Pedro Coria (2018). "Osteology of the Late Cretaceous Argentinean sauropod dinosaur Mendozasaurus neguyelap: implications for basal titanosaur relationships". Zoological Journal of the Linnean Society. 184 (1): 136–181. doi:10.1093/zoolinnean/zlx103. hdl:10044/1/53967.
  192. Philip J. Currie; Jeffrey A. Wilson; Federico Fanti; Buuvei Mainbayar; Khishigjav Tsogtbaatar (2018). "Rediscovery of the type localities of the Late Cretaceous Mongolian sauropods Nemegtosaurus mongoliensis and Opisthocoelicaudia skarzynskii: Stratigraphic and taxonomic implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 5–13. Bibcode:2018PPP...494....5C. doi:10.1016/j.palaeo.2017.10.035.
  193. Femke M. Holwerda; Verónica Díez Díaz; Alejandro Blanco; Roel Montie; Jelle W.F. Reumer (2018). "Late Cretaceous sauropod tooth morphotypes may provide supporting evidence for faunal connections between North Africa and Southern Europe". PeerJ. 6: e5925. doi:10.7717/peerj.5925. PMC 6237117. PMID 30473934.
  194. Marcos G. Becerra; Diego Pol; Oliver W.M. Rauhut; Ignacio A. Cerda (2016). "New heterodontosaurid remains from the Cañadón Asfalto Formation: cursoriality and the functional importance of the pes in small heterodontosaurids". Journal of Paleontology. 90 (3): 555–577. doi:10.1017/jpa.2016.24.
  195. Marcos Gabriel Becerra; Mariano Andres Ramírez (2018). "Locomotor morphotypes, allometry, linear regressions and the smallest sizes in Ornithischia: estimating body length using hind limb variables". Ameghiniana. 55 (5): 491–516. doi:10.5710/AMGH.27.06.2018.3189.
  196. Marcos G. Becerra; Diego Pol; Gertrud E. Rössner; Oliver W. M. Rauhut (2018). "Heterodonty and double occlusion in Manidens condorensis: a unique adaptation in an Early Jurassic ornithischian improving masticatory efficiency". The Science of Nature. 105 (7–8): Article 41. Bibcode:2018SciNa.105...41B. doi:10.1007/s00114-018-1569-6. PMID 29904792.
  197. Baoqiao Hao; Qiannan Zhang; Guangzhao Peng; Yong Ye; Hailu You (2018). "Redescription of Gigantspinosaurus sichuanensis (Dinosauria, Stegosauria) from the Late Jurassic of Sichuan, Southwestern China". Acta Geologica Sinica (English Edition). 92 (2): 431–441. doi:10.1111/1755-6724.13535.
  198. Bao-Qiao Hao; Yong Ye; Susannah C R. Maidment; Sergio Bertazzo; Guang-Zhao Peng; Hai-Lu You (2018). "Femoral osteopathy in Gigantspinosaurus sichuanensis (Dinosauria: Stegosauria) from the Late Jurassic of Sichuan Basin, Southwestern China". Historical Biology: An International Journal of Paleobiology. in press: 1–8. doi:10.1080/08912963.2018.1561673.
  199. Susannah C. R. Maidment; D. Cary Woodruff; John R. Horner (2018). "A new specimen of the ornithischian dinosaur Hesperosaurus mjosi from the Upper Jurassic Morrison Formation of Montana, U.S.A., and implications for growth and size in Morrison stegosaurs" (PDF). Journal of Vertebrate Paleontology. 38 (1): e1406366. doi:10.1080/02724634.2017.1406366. hdl:10141/622747.
  200. Thomas J. Raven; Susannah C.R. Maidment (2018). "The systematic position of the enigmatic thyreophoran dinosaur Paranthodon africanus, and the use of basal exemplifiers in phylogenetic analysis". PeerJ. 6: e4529. doi:10.7717/peerj.4529. PMC 5865477. PMID 29576986.
  201. Heitor Francischini; Marcos A. F. Sales; Paula Dentzien–Dias; Cesar L. Schultz (2018). "The presence of ankylosaur tracks in the Guará Formation (Brazil) and remarks on the spatial and temporal distribution of Late Jurassic dinosaurs". Ichnos: An International Journal for Plant and Animal Traces. 25 (2–3): 177–191. doi:10.1080/10420940.2017.1337573.
  202. Rubén A. Rodríguez-de la Rosa; María Patricia Velasco-de León; Javier Arellano-Gil; Diego Enrique Lozano-Carmona (2018). "Middle Jurassic ankylosaur tracks from Mexico". Boletín de la Sociedad Geológica Mexicana. 70 (2): 379–395. doi:10.18268/BSGM2018v70n2a8.
  203. Jason M. Bourke; Wm. Ruger Porter; Lawrence M. Witmer (2018). "Convoluted nasal passages function as efficient heat exchangers in ankylosaurs (Dinosauria: Ornithischia: Thyreophora)". PLOS ONE. 13 (12): e0207381. Bibcode:2018PLoSO..1307381B. doi:10.1371/journal.pone.0207381. PMC 6300222. PMID 30566469.
  204. Ariana Paulina-Carabajal; Yuong-Nam Lee; Yoshitsugu Kobayashi; Hang-Jae Lee; Philip J. Currie (2018). "Neuroanatomy of the ankylosaurid dinosaurs Tarchia teresae and Talarurus plicatospineus from the Upper Cretaceous of Mongolia, with comments on endocranial variability among ankylosaurs". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 135–146. Bibcode:2018PPP...494..135P. doi:10.1016/j.palaeo.2017.11.030.
  205. Jordan C. Mallon; Donald M. Henderson; Colleen M. McDonough; W.J. Loughry (2018). "A 'bloat-and-float' taphonomic model best explains the upside-down preservation of ankylosaurs". Palaeogeography, Palaeoclimatology, Palaeoecology. 497: 117–127. Bibcode:2018PPP...497..117M. doi:10.1016/j.palaeo.2018.02.010.
  206. Jun Chen; Aaron R. H. LeBlanc; Liyong Jin; Timothy Huang; Robert R. Reisz (2018). "Tooth development, histology, and enamel microstructure in Changchunsaurus parvus: Implications for dental evolution in ornithopod dinosaurs". PLOS ONE. 13 (11): e0205206. Bibcode:2018PLoSO..1305206C. doi:10.1371/journal.pone.0205206. PMC 6221265. PMID 30403689.
  207. Héctor E. Rivera-Sylva; Eberhard Frey; Wolfgang Stinnesbeck; Natalia Amezcua; Diana Flores Huerta (2018). "First occurrence of Parksosauridae in Mexico from the Cerro del Pueblo Formation (Late Cretaceous; Late Campanian) at Las Águilas, Coahuila". Boletín de la Sociedad Geológica Mexicana. 70 (3): 779–785. doi:10.18268/BSGM2018v70n3a10.
  208. Holly N. Woodward; Thomas H. Rich; Patricia Vickers-Rich (2018). "The bone microstructure of polar "hypsilophodontid" dinosaurs from Victoria, Australia". Scientific Reports. 8 (1): Article number 1162. Bibcode:2018NatSR...8.1162W. doi:10.1038/s41598-018-19362-6. PMC 5773672. PMID 29348463.
  209. Gregory J. Retallack; Jessica M. Theodor; Edward B. Davis; Samantha S. B. Hopkins; Paul Z. Barrett (2018). "First dinosaur (Ornithopoda) from Early Cretaceous (Albian) of Oregon, U.S.A.". Journal of Vertebrate Paleontology. 38 (4): (1)–(5). doi:10.1080/02724634.2018.1486847.
  210. Tom Hübner (2018). "The postcranial ontogeny of Dysalotosaurus lettowvorbecki (Ornithischia: Iguanodontia) and implications for the evolution of ornithopod dinosaurs". Palaeontographica Abteilung A. 310 (3–6): 43–120. doi:10.1127/pala/2018/0072.
  211. A. V. Lopatin; A. O. Averianov; V. R. Alifanov (2018). "New data on dinosaurs of the Crimean Peninsula". Doklady Biological Sciences. 482 (1): 206–209. doi:10.1134/S0012496618050150. PMID 30402761.
  212. Francisco Javier Verdú; Rafael Royo-Torres; Alberto Cobos; Luis Alcalá (2018). "New systematic and phylogenetic data about the early Barremian Iguanodon galvensis (Ornithopoda: Iguanodontoidea) from Spain". Historical Biology: An International Journal of Paleobiology. 30 (4): 437–474. doi:10.1080/08912963.2017.1287179.
  213. Yan Wu; Hai-Lu You; Xiao-Qiang Li (2018). "Dinosaur-associated Poaceae epidermis and phytoliths from the Early Cretaceous of China". National Science Review. 5 (5): 721–727. doi:10.1093/nsr/nwx145.
  214. Ryuji Takasaki; Kentaro Chiba; Yoshitsugu Kobayashi; Philip J. Currie; Anthony R. Fiorillo (2018). "Reanalysis of the phylogenetic status of Nipponosaurus sachalinensis (Ornithopoda: Dinosauria) from the Late Cretaceous of Southern Sakhalin". Historical Biology: An International Journal of Paleobiology. 30 (5): 694–711. doi:10.1080/08912963.2017.1317766.
  215. Víctor Fondevilla; Fabio Marco Dalla Vecchia; Rodrigo Gaete; Àngel Galobart; Blanca Moncunill-Solé; Meike Köhler (2018). "Ontogeny and taxonomy of the hadrosaur (Dinosauria, Ornithopoda) remains from Basturs Poble bonebed (late early Maastrichtian, Tremp Syncline, Spain)". PLOS ONE. 13 (10): e0206287. doi:10.1371/journal.pone.0206287. PMC 6209292. PMID 30379888.
  216. Albert Prieto-Marquez; Merrilee F. Guenther (2018). "Perinatal specimens of Maiasaura from the Upper Cretaceous of Montana (USA): insights into the early ontogeny of saurolophine hadrosaurid dinosaurs". PeerJ. 6: e4734. doi:10.7717/peerj.4734. PMC 5960587. PMID 29785343.
  217. Marcos G. Becerra; Ariana Paulina-Carabajal; Penélope Cruzado-Caballero; Jeremías R.A. Taborda (2018). "First endocranial description of a South American hadrosaurid: The neuroanatomy of Secernosaurus koerneri from the Late Cretaceous of Argentina". Acta Palaeontologica Polonica. 63 (4): 693–702. doi:10.4202/app.00526.2018.
  218. Mateusz Wosik; Mark B. Goodwin; David C. Evans (2018). "A nestling-sized skeleton of Edmontosaurus (Ornithischia, Hadrosauridae) from the Hell Creek Formation of northeastern Montana, U.S.A., with an analysis of ontogenetic limb allometry". Journal of Vertebrate Paleontology. 37 (6): e1398168. doi:10.1080/02724634.2017.1398168.
  219. David G. Taylor; Spencer G. Lucas (2018). "A Late Cretaceous (Campanian) hadrosaur sacrum from the Cape Sebastian Sandstone, Curry County, Oregon". New Mexico Museum of Natural History and Science Bulletin. 79: 695–702.
  220. Leonardo Maiorino; Andrew A. Farke; Tassos Kotsakis; Pasquale Raia; Paolo Piras (2018). "Who is the most stressed? Morphological disparity and mechanical behavior of the feeding apparatus of ceratopsian dinosaurs (Ornithischia, Marginocephalia)". Cretaceous Research. 84: 483–500. doi:10.1016/j.cretres.2017.11.012.
  221. Andrew Knapp; Robert J. Knell; Andrew A. Farke; Mark A. Loewen; David W. E. Hone (2018). "Patterns of divergence in the morphology of ceratopsian dinosaurs: sympatry is not a driver of ornament evolution". Proceedings of the Royal Society B: Biological Sciences. 285 (1875): 20180312. doi:10.1098/rspb.2018.0312. PMC 5897650. PMID 29563271.
  222. Fenglu Han; Catherine A. Forster; Xing Xu; James M. Clark (2018). "Postcranial anatomy of Yinlong downsi (Dinosauria: Ceratopsia) from the Upper Jurassic Shishugou Formation of China and the phylogeny of basal ornithischians". Journal of Systematic Palaeontology. 16 (14): 1159–1187. doi:10.1080/14772019.2017.1369185.
  223. A. V. Podlesnov (2018). "Morphology of the craniovertebral joint in Psittacosaurus sibiricus (Ornithischia: Ceratopsia)". Paleontological Journal. 52 (6): 664–676. doi:10.1134/S0031030118060096.
  224. Yiming He; Peter J. Makovicky; Xing Xu; Hailu You (2018). "High-resolution computed tomographic analysis of tooth replacement pattern of the basal neoceratopsian Liaoceratops yanzigouensis informs ceratopsian dental evolution". Scientific Reports. 8 (1): Article number 5870. Bibcode:2018NatSR...8.5870H. doi:10.1038/s41598-018-24283-5. PMC 5897341. PMID 29651146.
  225. Łucja Fostowicz-Frelik; Justyna Słowiak (2018). "Bone histology of Protoceratops andrewsi from the Late Cretaceous of Mongolia and its biological implications". Acta Palaeontologica Polonica. 63 (3): 503–517. doi:10.4202/app.00463.2018.
  226. V. S. Tereschenko (2018). "On polymorphism of Protoceratops andrewsi Granger et Gregory, 1923 (Protoceratopidae, Neoceratopsia)". Paleontological Journal. 52 (4): 429–444. doi:10.1134/S0031030118040135.
  227. Caleb M. Brown (2018). "Long-horned Ceratopsidae from the Foremost Formation (Campanian) of southern Alberta". PeerJ. 6: e4265. doi:10.7717/peerj.4265. PMC 5774296. PMID 29362697.
  228. Kentaro Chiba; Michael J. Ryan; Federico Fanti; Mark A. Loewen; David C. Evans (2018). "New material and systematic re-evaluation of Medusaceratops lokii (Dinosauria, Ceratopsidae) from the Judith River Formation (Campanian, Montana)". Journal of Paleontology. 92 (2): 272–288. doi:10.1017/jpa.2017.62.
  229. David W.E. Hone; Darren H. Tanke; Caleb M. Brown (2018). "Bite marks on the frill of a juvenile Centrosaurus from the Late Cretaceous Dinosaur Provincial Park Formation, Alberta, Canada". PeerJ. 6: e5748. doi:10.7717/peerj.5748. PMC 6188009. PMID 30345174.
  230. James A. Campbell; Michael J. Ryan; Claudia J. Schröder-Adams; David C. Evans; Robert B. Holmes (2018). "New insights into chasmosaurine (Dinosauria: Ceratopsidae) skulls from the Upper Cretaceous (Campanian) of Alberta, and an update on the distribution of accessory frill fenestrae in Chasmosaurinae". PeerJ. 6: e5194. doi:10.7717/peerj.5194. PMC 6034596. PMID 30002987.
  231. Klara K. Nordén; Thomas L. Stubbs; Albert Prieto-Márquez; Michael J. Benton (2018). "Multifaceted disparity approach reveals dinosaur herbivory flourished before the end-Cretaceous mass extinction". Paleobiology. 44 (4): 620–637. doi:10.1017/pab.2018.26.
  232. Baron, Matthew G.; Barrett, Paul M. (August 2017). "A dinosaur missing-link? Chilesaurus and the early evolution of ornithischian dinosaurs". Biology Letters. 13 (8): 20170220. doi:10.1098/rsbl.2017.0220. ISSN 1744-9561. PMC 5582101. PMID 28814574.
  233. Temp Müller, Rodrigo; Augusto Pretto, Flávio; Kerber, Leonardo; Silva-Neves, Eduardo; Dias-da-Silva, Sérgio (March 2018). "Comment on 'A dinosaur missing-link? Chilesaurus and the early evolution of ornithischian dinosaurs'". Biology Letters. 14 (3): 20170581. doi:10.1098/rsbl.2017.0581. ISSN 1744-9561. PMC 5897605. PMID 29593074.
  234. Müller, Rodrigo Temp; Garcia, Maurício Silva; Da-Rosa, Átila Augusto Stock; Dias-da-Silva, Sérgio (December 2018). "Under pressure: Effect of sedimentary compression on the iliac morphology of early sauropodomorphs". Journal of South American Earth Sciences. 88: 345–351. Bibcode:2018JSAES..88..345M. doi:10.1016/j.jsames.2018.09.005.
  235. Héctor E. Rivera-Sylva; Eberhard Frey; Wolfgang Stinnesbeck; Gerardo Carbot-Chanona; Iván E. Sanchez-Uribe; José Rubén Guzmán-Gutiérrez (2018). "Paleodiversity of Late Cretaceous Ankylosauria from Mexico and their phylogenetic significance". Swiss Journal of Palaeontology. 137 (1): 83–93. doi:10.1007/s13358-018-0153-1.
  236. Prieto-Márquez, Albert; Fondevilla, Víctor; Sellés, Albert G.; Wagner, Jonathan R.; Galobart; Àngel (2019). "Adynomosaurus arcanus, a new lambeosaurine dinosaur from the Late Cretaceous Ibero-Armorican Island of the European Archipelago". Cretaceous Research. 96: 19–37. doi:10.1016/j.cretres.2018.12.002.
  237. Jelle P. Wiersma; Randall B. Irmis (2018). "A new southern Laramidian ankylosaurid, Akainacephalus johnsoni gen. et sp. nov., from the upper Campanian Kaiparowits Formation of southern Utah, USA". PeerJ. 6: e5016. doi:10.7717/peerj.5016. PMC 6063217. PMID 30065856.
  238. Xin-Xin Ren; Jian-Dong Huang; Hai-Lu You (2020). "The second mamenchisaurid dinosaur from the Middle Jurassic of Eastern China". Historical Biology: An International Journal of Paleobiology. 32 (5): 602–610. doi:10.1080/08912963.2018.1515935.
  239. Paul Penkalski (2018). "Revised systematics of the armoured dinosaur Euoplocephalus and its allies". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 287 (3): 261–306. doi:10.1127/njgpa/2018/0717.
  240. Yilun Yu; Kebai Wang; Shuqing Chen; Corwin Sullivan; Shuo Wang; Peiye Wang; Xing Xu (2018). "A new caenagnathid dinosaur from the Upper Cretaceous Wangshi Group of Shandong, China, with comments on size variation among oviraptorosaurs". Scientific Reports. 8 (1): Article number 5030. Bibcode:2018NatSR...8.5030Y. doi:10.1038/s41598-018-23252-2. PMC 5864915. PMID 29567954.
  241. ReBecca K. Hunt; James H. Quinn (2018). "A new ornithomimosaur from the Lower Cretaceous Trinity Group of Arkansas". Journal of Vertebrate Paleontology. 38 (1): e1421209. doi:10.1080/02724634.2017.1421209.
  242. G.F. Funston; S.E. Mendonca; P.J. Currie; R. Barsbold (2018). "Oviraptorosaur anatomy, diversity and ecology in the Nemegt Basin". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 101–120. Bibcode:2018PPP...494..101F. doi:10.1016/j.palaeo.2017.10.023.
  243. Jorge O. Calvo; Bernardo Gonzalez Riga (2018). "Baalsaurus mansillai gen. et sp. nov. a new titanosaurian sauropod (Late Cretaceous) from Neuquén, Patagonia, Argentina". Anais da Academia Brasileira de Ciências. 91 (Suppl. 2): e20180661. doi:10.1590/0001-3765201820180661. PMID 30569970.
  244. Flávio A. Pretto; Max C. Langer; Cesar L. Schultz (2018). "A new dinosaur (Saurischia: Sauropodomorpha) from the Late Triassic of Brazil provides insights on the evolution of sauropodomorph body plan". Zoological Journal of the Linnean Society. 185 (2): 388–416. doi:10.1093/zoolinnean/zly028.
  245. Xing Xu; Jonah Choiniere; Qingwei Tan; Roger B.J. Benson; James Clark; Corwin Sullivan; Qi Zhao; Fenglu Han; Qingyu Ma; Yiming He; Shuo Wang; Hai Xing; Lin Tan (2018). "Two Early Cretaceous fossils document transitional stages in alvarezsaurian dinosaur evolution". Current Biology. 28 (17): 2853–2860.e3. doi:10.1016/j.cub.2018.07.057. PMID 30146153.
  246. Xing Xu; Qingwei Tan; Yilong Gao; Zhiqiang Bao; Zhigang Yin; Bin Guo; Junyou Wang; Lin Tan; Yuguang Zhang; Hai Xing (2018). "A large-sized basal ankylopollexian from East Asia, shedding light on early biogeographic history of Iguanodontia". Science Bulletin. 63 (9): 556–563. doi:10.1016/j.scib.2018.03.016.
  247. Dongyu Hu; Julia A. Clarke; Chad M. Eliason; Rui Qiu; Quanguo Li; Matthew D. Shawkey; Cuilin Zhao; Liliana D’Alba; Jinkai Jiang; Xing Xu (2018). "A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution". Nature Communications. 9 (1): Article number 217. Bibcode:2018NatCo...9..217H. doi:10.1038/s41467-017-02515-y. PMC 5768872. PMID 29335537.
  248. Edith Simón; Leonardo Salgado; Jorge O. Calvo (2018). "A new titanosaur sauropod from the Upper Cretaceous of Patagonia, Neuquén Province, Argentina". Ameghiniana. 55 (1): 1–29. doi:10.5710/AMGH.01.08.2017.3051.
  249. Terry A. Gates; Khishigjav Tsogtbaatar; Lindsay E. Zanno; Tsogtbaatar Chinzorig; Mahito Watabe (2018). "A new iguanodontian (Dinosauria: Ornithopoda) from the Early Cretaceous of Mongolia". PeerJ. 6: e5300. doi:10.7717/peerj.5300. PMC 6078070. PMID 30083450.
  250. Sebastian G. Dalman; John-Paul M. Hodnett; Asher J. Lichtig; Spencer G. Lucas (2018). "A new ceratopsid dinosaur (Centrosaurinae: Nasutoceratopsini) from the Fort Crittenden Formation, Upper Cretaceous (Campanian) of Arizona". New Mexico Museum of Natural History and Science Bulletin. 79: 141–164.
  251. Matthew C. Herne; Alan M. Tait; Vera Weisbecker; Michael Hall; Jay P. Nair; Michael Cleeland; Steven W. Salisbury (2018). "A new small-bodied ornithopod (Dinosauria, Ornithischia) from a deep, high-energy Early Cretaceous river of the Australian–Antarctic rift system". PeerJ. 6: e4113. doi:10.7717/peerj.4113. PMC 5767335. PMID 29340228.
  252. Kenneth Carpenter; Peter M. Galton (2018). "A photo documentation of bipedal ornithischian dinosaurs from the Upper Jurassic Morrison Formation, USA". Geology of the Intermountain West. 5: 167–207. doi:10.31711/giw.v5.pp167-207. Archived from the original on 2018-08-22. Retrieved 2018-08-22.
  253. Andrew T. McDonald; Douglas G. Wolfe; Alton C. Dooley Jr (2018). "A new tyrannosaurid (Dinosauria: Theropoda) from the Upper Cretaceous Menefee Formation of New Mexico". PeerJ. 6: e5749. doi:10.7717/peerj.5749. PMC 6183510. PMID 30324024.
  254. Cecilia Apaldetti; Ricardo N. Martínez; Ignacio A. Cerda; Diego Pol; Oscar Alcober (2018). "An early trend towards gigantism in Triassic sauropodomorph dinosaurs". Nature Ecology & Evolution. 2 (8): 1227–1232. doi:10.1038/s41559-018-0599-y. hdl:11336/89332. PMID 29988169.
  255. Andrew T. McDonald; Douglas G. Wolfe (2018). "A new nodosaurid ankylosaur (Dinosauria: Thyreophora) from the Upper Cretaceous Menefee Formation of New Mexico". PeerJ. 6: e5435. doi:10.7717/peerj.5435. PMC 6110256. PMID 30155354.
  256. Wenjie Zheng; Xingsheng Jin; Yoichi Azuma; Qiongying Wang; Kazunori Miyata; Xing Xu (2018). "The most basal ankylosaurine dinosaur from the Albian–Cenomanian of China, with implications for the evolution of the tail club". Scientific Reports. 8 (1): Article number 3711. Bibcode:2018NatSR...8.3711Z. doi:10.1038/s41598-018-21924-7. PMC 5829254. PMID 29487376.
  257. José I. Canudo; José L. Carballido; Alberto Garrido; Leonardo Salgado (2018). "A new rebbachisaurid sauropod from the Aptian–Albian, Lower Cretaceous Rayoso Formation, Neuquén, Argentina". Acta Palaeontologica Polonica. 63 (4): 679–691. doi:10.4202/app.00524.2018.
  258. Blair W. McPhee; Roger B.J. Benson; Jennifer Botha-Brink; Emese M. Bordy; Jonah N. Choiniere (2018). "A giant dinosaur from the earliest Jurassic of South Africa and the transition to quadrupedality in early sauropodomorphs". Current Biology. 28 (19): 3143–3151.e7. doi:10.1016/j.cub.2018.07.063. PMID 30270189.
  259. Chang-fu Zhou; Wen-hao Wu; Toru Sekiya; Zhi-ming Dong (2018). "A new Titanosauriformes dinosaur from Jehol Biota of western Liaoning, China". Global Geology. 37 (2): 327–333. doi:10.3969/j.issn.1004-5589.2018.02.001.
  260. Xing Xu; Paul Upchurch; Philip D. Mannion; Paul M. Barrett; Omar R. Regalado-Fernandez; Jinyou Mo; Jinfu Ma; Hongan Liu (2018). "A new Middle Jurassic diplodocoid suggests an earlier dispersal and diversification of sauropod dinosaurs". Nature Communications. 9 (1): Article number 2700. Bibcode:2018NatCo...9.2700X. doi:10.1038/s41467-018-05128-1. PMC 6057878. PMID 30042444.
  261. Rodrigo Temp Müller; Max Cardoso Langer; Sérgio Dias-da-Silva (2018). "An exceptionally preserved association of complete dinosaur skeletons reveals the oldest long-necked sauropodomorphs". Biology Letters. 14 (11): 20180633. doi:10.1098/rsbl.2018.0633. PMC 6283919. PMID 30463923.
  262. Hesham M. Sallam; Eric Gorscak; Patrick M. O’Connor; Iman A. El-Dawoudi; Sanaa El-Sayed; Sara Saber; Mahmoud A. Kora; Joseph J. W. Sertich; Erik R. Seiffert; Matthew C. Lamanna (2018). "New Egyptian sauropod reveals Late Cretaceous dinosaur dispersal between Europe and Africa". Nature Ecology & Evolution. 2 (3): 445–451. doi:10.1038/s41559-017-0455-5. PMID 29379183.
  263. Carpenter, K. (2018). "Maraapunisaurus fragillimus, n.g. (formerly Amphicoelias fragillimus), a basal Rebbachisaurid from the Morrison Formation (Upper Jurassic) of Colorado". Geology of the Intermountain West. 5 (9): 227–244. doi:10.31711/giw.v5i0.28. ISSN 2380-7601. Archived from the original on 2018-10-22. Retrieved 2018-10-21.
  264. T. A. Tumanova; V. R. Alifanov (2018). "First record of stegosaur (Ornithischia, Dinosauria) from the Aptian–Albian of Mongolia". Paleontological Journal. 52 (14): 1771–1779. doi:10.1134/S0031030118140186.
  265. Rodolfo A. Coria; Guillermo J. Windholz; Francisco Ortega; Philip J. Currie (2019). "A new dicraeosaurid sauropod from the Lower Cretaceous (Mulichinco Formation, Valanginian, Neuquén Basin) of Argentina". Cretaceous Research. 93: 33–48. doi:10.1016/j.cretres.2018.08.019.
  266. Lü, Jun-chang; Xu, Li; Chang, Hua-li; Jia, Song-hai; Zhang, Ji-ming; Gao, Dian-song; Zhang, Yi-yang; Zhang, Cheng-jun; Ding, Fang (2018). "A new alvarezsaurid dinosaur from the Late Cretaceous Qiupa Formation of Luanchuan, Henan Province, central China". China Geology. 1 (1): 28–35. doi:10.31035/cg2018005. ISSN 2096-5192.
  267. Cristiano Dal Sasso; Simone Maganuco; Andrea Cau (2018). "The oldest ceratosaurian (Dinosauria: Theropoda), from the Lower Jurassic of Italy, sheds light on the evolution of the three-fingered hand of birds". PeerJ. 6: e5976. doi:10.7717/peerj.5976. PMC 6304160. PMID 30588396.
  268. Alexander Averianov; Stepan Ivantsov; Pavel Skutschas; Alexey Faingertz; Sergey Leshchinskiy (2018). "A new sauropod dinosaur from the Lower Cretaceous Ilek Formation, Western Siberia, Russia". Geobios. 51 (1): 1–14. doi:10.1016/j.geobios.2017.12.004.
  269. Rafael Delcourt; Fabiano Vidoi Iori (2020). "A new Abelisauridae (Dinosauria: Theropoda) from São José do Rio Preto Formation, Upper Cretaceous of Brazil and comments on the Bauru Group fauna". Historical Biology: An International Journal of Paleobiology. 32 (7): 917–924. doi:10.1080/08912963.2018.1546700.
  270. Juan D. Porfiri; Rubén D. Juárez Valieri; Domenica D.D. Santos; Matthew C. Lamanna (2018). "A new megaraptoran theropod dinosaur from the Upper Cretaceous Bajo de la Carpa Formation of northwestern Patagonia". Cretaceous Research. 89: 302–319. doi:10.1016/j.cretres.2018.03.014.
  271. Alexander Averianov; Vladimir Efimov (2018). "The oldest titanosaurian sauropod of the Northern Hemisphere". Biological Communications. 63 (3): 145–162. doi:10.21638/spbu03.2018.301.
  272. Phil R. Bell; Matthew C. Herne; Tom Brougham; Elizabeth T. Smith (2018). "Ornithopod diversity in the Griman Creek Formation (Cenomanian), New South Wales, Australia". PeerJ. 6: e6008. doi:10.7717/peerj.6008. PMC 6284429. PMID 30533306.
  273. Qian-Nan Zhang; Hai-Lu You; Tao Wang; Sankar Chatterjee (2018). "A new sauropodiform dinosaur with a 'sauropodan' skull from the Lower Jurassic Lufeng Formation of Yunnan Province, China". Scientific Reports. 8 (1): Article number 13464. Bibcode:2018NatSR...813464Z. doi:10.1038/s41598-018-31874-9. PMC 6128897. PMID 30194381.
  274. Daniel Smith-Paredes; Daniel Núñez-León; Sergio Soto-Acuña; Jingmai O’Connor; João Francisco Botelho; Alexander O. Vargas (2018). "Dinosaur ossification centres in embryonic birds uncover developmental evolution of the skull". Nature Ecology & Evolution. 2 (12): 1966–1973. doi:10.1038/s41559-018-0713-1. PMID 30455438.
  275. D. C. Deeming; G. Mayr (2018). "Pelvis morphology suggests that early Mesozoic birds were too heavy to contact incubate their eggs". Journal of Evolutionary Biology. 31 (5): 701–709. doi:10.1111/jeb.13256. PMID 29485191.
  276. Lida Xing; Ryan C. McKellar; Xing Xu; Gang Li; Ming Bai; W. Scott Persons IV; Tetsuto Miyashita; Michael J. Benton; Jianping Zhang; Alexander P. Wolfe; Qiru Yi; Kuowei Tseng; Hao Ran; Philip J. Currie (2016). "A feathered dinosaur tail with primitive plumage trapped in mid-Cretaceous amber". Current Biology. 26 (24): 3352–3360. doi:10.1016/j.cub.2016.10.008. PMID 27939315.
  277. Dana J. Rashid; Kevin Surya; Luis M. Chiappe; Nathan Carroll; Kimball L. Garrett; Bino Varghese; Alida Bailleul; Jingmai K. O’Connor; Susan C. Chapman; John R. Horner (2018). "Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens". Scientific Reports. 8 (1): Article number 9014. Bibcode:2018NatSR...8.9014R. doi:10.1038/s41598-018-27336-x. PMC 5997987. PMID 29899503.
  278. Maria Eugenia Leone Gold; Akinobu Watanabe (2018). "Flightless birds are not neuroanatomical analogs of non-avian dinosaurs". BMC Evolutionary Biology. 18 (1): 190. doi:10.1186/s12862-018-1312-0. PMC 6293530. PMID 30545287.
  279. Mary Higby Schweitzer; Wenxia Zheng; Alison E. Moyer; Peter Sjövall; Johan Lindgren (2018). "Preservation potential of keratin in deep time". PLOS ONE. 13 (11): e0206569. Bibcode:2018PLoSO..1306569S. doi:10.1371/journal.pone.0206569. PMC 6261410. PMID 30485294.
  280. Evan T. Saitta; Jakob Vinther (2019). "A perspective on the evidence for keratin protein preservation in fossils: An issue of replication versus validation". Palaeontologia Electronica. 22 (3): Article number 22.3.2E. doi:10.26879/1017E.
  281. Lida Xing; Pierre Cockx; Ryan C. McKellar; Jingmai O’Connor (2018). "Ornamental feathers in Cretaceous Burmese amber: resolving the enigma of rachis-dominated feather structure". Journal of Palaeogeography. 7 (1): Article 13. Bibcode:2018JPalg...7...13X. doi:10.1186/s42501-018-0014-2.
  282. Lida Xing; Ryan C. McKellar; Zhizhong Gao (2018). "Cretaceous hitchhikers: a possible phoretic association between a pseudoscorpion and bird in Burmese amber". Acta Geologica Sinica (English Edition). 92 (6): 2434–2435. doi:10.1111/1755-6724.13739 (inactive 2020-05-22).
  283. Li-Da Xing; Yuan-Chao Hu; Jian-Dong Huang; Qing He; Martin G. Lockley; Michael E. Burns; Jun Fang (2018). "A redescription of the ichnospecies Koreanaornis anhuiensis (Aves) from the Lower Cretaceous Qiuzhuang Formation at Mingguang city, Anhui Province, China". Journal of Palaeogeography. 7 (1): 58–65. Bibcode:2018JPalG...7...58X. doi:10.1016/j.jop.2017.10.003.
  284. Takuya Imai; Yuta Tsukiji; Yoichi Azuma (2018). "Description of bird tracks from the Kitadani Formation (Aptian), Katsuyama, Fukui, Japan with three-dimensional imaging techniques" (PDF). Memoir of the Fukui Prefectural Dinosaur Museum. 17: 1–8.
  285. Lisa G. Buckley; Richard T. McCrea; Lida Xing (2018). "First report of Ignotornidae (Aves) from the Lower Cretaceous Gates Formation (Albian) of western Canada, with description of a new ichnospecies of Ignotornis, Ignotornis canadensis ichnosp. nov". Cretaceous Research. 84: 209–222. doi:10.1016/j.cretres.2017.11.021.
  286. Lida Xing; Lisa G. Buckley; Martin G. Lockley; Richard T. McCrea; Yonggang Tang (2018). "Lower Cretaceous avian tracks from Jiangsu Province, China: A first Chinese report for ichnogenus Goseongornipes (Ignotornidae)". Cretaceous Research. 84: 571–577. doi:10.1016/j.cretres.2017.12.016.
  287. Oliver W.M. Rauhut; Christian Foth; Helmut Tischlinger (2018). "The oldest Archaeopteryx (Theropoda: Avialiae): a new specimen from the Kimmeridgian/Tithonian boundary of Schamhaupten, Bavaria". PeerJ. 6: e4191. doi:10.7717/peerj.4191. PMC 5788062. PMID 29383285.
  288. Dennis F. A. E. Voeten; Jorge Cubo; Emmanuel de Margerie; Martin Röper; Vincent Beyrand; Stanislav Bureš; Paul Tafforeau; Sophie Sanchez (2018). "Wing bone geometry reveals active flight in Archaeopteryx". Nature Communications. 9 (1): Article number 923. Bibcode:2018NatCo...9..923V. doi:10.1038/s41467-018-03296-8. PMC 5849612. PMID 29535376.
  289. Jingmai O'Connor; Xiaoli Wang; Corwin Sullivan; Yan Wang; Xiaoting Zheng; Han Hu; Xiaomei Zhang; Zhonghe Zhou (2018). "First report of gastroliths in the Early Cretaceous basal bird Jeholornis". Cretaceous Research. 84: 200–208. doi:10.1016/j.cretres.2017.10.031.
  290. Guillermo Navalón; Qingjin Meng; Jesús Marugán-Lobón; Yuguang Zhang; Baopeng Wang; Hai Xing; Di Liu; Luis M. Chiappe (2018). "Diversity and evolution of the Confuciusornithidae: Evidence from a new 131-million-year-old specimen from the Huajiying Formation in NE China". Journal of Asian Earth Sciences. 152: 12–22. Bibcode:2018JAESc.152...12N. doi:10.1016/j.jseaes.2017.11.005. hdl:10486/684666.
  291. Andrzej Elżanowski; D. Stefan Peters; Gerald Mayr (2018). "Cranial morphology of the Early Cretaceous bird Confuciusornis". Journal of Vertebrate Paleontology. 38 (2): e1439832. doi:10.1080/02724634.2018.1439832.
  292. Quanguo Li; Julia A. Clarke; Ke-Qin Gao; Jennifer A. Peteya; Matthew D. Shawkey (2018). "Elaborate plumage patterning in a Cretaceous bird". PeerJ. 6: e5831. doi:10.7717/peerj.5831. PMC 6216952. PMID 30405969.
  293. Lida Xing; Jingmai K. O'Connor; Ryan C. McKellar; Luis M. Chiappe; Ming Bai; Kuowei Tseng; Jie Zhang; Haidong Yang; Jun Fang; Gang Li (2018). "A flattened enantiornithine in mid-Cretaceous Burmese amber: morphology and preservation". Science Bulletin. 63 (4): 235–243. doi:10.1016/j.scib.2018.01.019.
  294. Fabien Knoll; Luis M. Chiappe; Sophie Sanchez; Russell J. Garwood; Nicholas P. Edwards; Roy A. Wogelius; William I. Sellers; Phillip L. Manning; Francisco Ortega; Francisco J. Serrano; Jesús Marugán-Lobón; Elena Cuesta; Fernando Escaso; Jose Luis Sanz (2018). "A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds". Nature Communications. 9 (1): Article number 937. Bibcode:2018NatCo...9..937K. doi:10.1038/s41467-018-03295-9. PMC 5838198. PMID 29507288.
  295. Francisco J. Serrano; Luis M. Chiappe; Paul Palmqvist; Borja Figueirido; Jesús Marugán-Lobón; José L. Sanz (2018). "Flight reconstruction of two European enantiornithines (Aves, Pygostylia) and the achievement of bounding flight in Early Cretaceous birds". Palaeontology. 61 (3): 359–368. doi:10.1111/pala.12351.
  296. A. V. Panteleev (2018). "Morphology of the coracoid of Late Cretaceous enantiornithines (Aves: Enantiornithes) from Dzharakuduk (Uzbekistan)". Paleontological Journal. 52 (2): 201–207. doi:10.1134/S0031030118020089.
  297. Jingmai O’Connor; Gregory M. Erickson; Mark Norell; Alida M. Bailleul; Han Hu; Zhonghe Zhou (2018). "Medullary bone in an Early Cretaceous enantiornithine bird and discussion regarding its identification in fossils". Nature Communications. 9 (1): Article number 5169. Bibcode:2018NatCo...9.5169O. doi:10.1038/s41467-018-07621-z. PMC 6281594. PMID 30518763.
  298. Xiaoli Wang; Jingmai K. O’Connor; John N. Maina; Yanhong Pan; Min Wang; Yan Wang; Xiaoting Zheng; Zhonghe Zhou (2018). "Archaeorhynchus preserving significant soft tissue including probable fossilized lungs". Proceedings of the National Academy of Sciences of the United States of America. 115 (45): 11555–11560. doi:10.1073/pnas.1805803115. PMC 6233124. PMID 30348768.
  299. Xia Wang; Jiandong Huang; Yuanchao Hu; Xiaoyu Liu; Jennifer Peteya; Julia A. Clarke (2018). "The earliest evidence for a supraorbital salt gland in dinosaurs in new Early Cretaceous ornithurines". Scientific Reports. 8 (1): Article number 3969. Bibcode:2018NatSR...8.3969W. doi:10.1038/s41598-018-22412-8. PMC 5838252. PMID 29507398.
  300. Evgeny E. Perkovsky; Ekaterina B. Sukhomlin; Nikita V. Zelenkov (2018). "An unexpectedly abundant new genus of black flies (Diptera, Simuliidae) from Upper Cretaceous Taimyr amber of Ugolyak, with discussion of the early evolution of birds at high latitudes". Cretaceous Research. 90: 80–89. doi:10.1016/j.cretres.2018.04.002.
  301. Daniel J. Field; Michael Hanson; David Burnham; Laura E. Wilson; Kristopher Super; Dana Ehret; Jun A. Ebersole; Bhart-Anjan S. Bhullar (2018). "Complete Ichthyornis skull illuminates mosaic assembly of the avian head". Nature. 557 (7703): 96–100. Bibcode:2018Natur.557...96F. doi:10.1038/s41586-018-0053-y. PMID 29720636.
  302. Daniel J. Field; Antoine Bercovici; Jacob S. Berv; Regan Dunn; David E. Fastovsky; Tyler R. Lyson; Vivi Vajda; Jacques A. Gauthier (2018). "Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction". Current Biology. 28 (11): 1825–1831.e2. doi:10.1016/j.cub.2018.04.062. PMID 29804807.
  303. Ryan N. Felice; Anjali Goswami (2018). "Developmental origins of mosaic evolution in the avian cranium". Proceedings of the National Academy of Sciences of the United States of America. 115 (3): 555–560. doi:10.1073/pnas.1716437115. PMC 5776993. PMID 29279399.
  304. Marcos Cenizo; Jorge Noriega; Juan Diederle; Esteban Soibelzon; Leopoldo Soibelzon; Sergio Rodriguez; Elisa Beilinson (2018). "An unexpected large Crested Tinamou (Eudromia, Tinamidae, Aves) near to Last Glacial Maximum (MIS 2, late Pleistocene) of the Argentine Pampas". Historical Biology: An International Journal of Paleobiology. 32 (3): 330–338. doi:10.1080/08912963.2018.1491568.
  305. Alexander P. Boast; Laura S. Weyrich; Jamie R. Wood; Jessica L. Metcalf; Rob Knight; Alan Cooper (2018). "Coprolites reveal ecological interactions lost with the extinction of New Zealand birds". Proceedings of the National Academy of Sciences of the United States of America. 115 (7): 1546–1551. doi:10.1073/pnas.1712337115. PMC 5816151. PMID 29440415.
  306. Joanna K. Carpenter; Jamie R. Wood; Janet M. Wilmshurst; Dave Kelly (2018). "An avian seed dispersal paradox: New Zealand's extinct megafaunal birds did not disperse large seeds". Proceedings of the Royal Society B: Biological Sciences. 285 (1877): 20180352. doi:10.1098/rspb.2018.0352. PMC 5936733. PMID 29669903.
  307. Vicki A. Thomson; Kieren J. Mitchell; Rolan Eberhard; Joe Dortch; Jeremy J. Austin; Alan Cooper (2018). "Genetic diversity and drivers of dwarfism in extinct island emu populations". Biology Letters. 14 (4): 20170617. doi:10.1098/rsbl.2017.0617. PMC 5938559. PMID 29618519.
  308. James Hansford; Patricia C. Wright; Armand Rasoamiaramanana; Ventura R. Pérez; Laurie R. Godfrey; David Errickson; Tim Thompson; Samuel T. Turvey (2018). "Early Holocene human presence in Madagascar evidenced by exploitation of avian megafauna". Science Advances. 4 (9): eaat6925. Bibcode:2018SciA....4.6925H. doi:10.1126/sciadv.aat6925. PMC 6135541. PMID 30214938.
  309. Christopher R. Torres; Julia A. Clarke (2018). "Nocturnal giants: evolution of the sensory ecology in elephant birds and other palaeognaths inferred from digital brain reconstructions". Proceedings of the Royal Society B: Biological Sciences. 285 (1890): 20181540. doi:10.1098/rspb.2018.1540. PMC 6235046. PMID 30381378.
  310. Antoine Louchart; Vivian de Buffrénil; Estelle Bourdon; Maïtena Dumont; Laurent Viriot; Jean-Yves Sire (2018). "Bony pseudoteeth of extinct pelagic birds (Aves, Odontopterygiformes) formed through a response of bone cells to tooth-specific epithelial signals under unique conditions". Scientific Reports. 8 (1): Article number 12952. Bibcode:2018NatSR...812952L. doi:10.1038/s41598-018-31022-3. PMC 6113277. PMID 30154516.
  311. Federico L. Agnolín; Federico Brissón Egli; Sankar Chatterjee; Jordi Alexis Garcia Marsà; Fernando E. Novas (2017). "Vegaviidae, a new clade of southern diving birds that survived the K/T boundary". The Science of Nature. 104 (11–12): Article 87. Bibcode:2017SciNa.104...87A. doi:10.1007/s00114-017-1508-y. PMID 28988276.
  312. Gerald Mayr; Vanesa L. De Pietri; R. Paul Scofield; Trevor H. Worthy (2018). "On the taxonomic composition and phylogenetic affinities of the recently proposed clade Vegaviidae Agnolín et al., 2017 ‒ neornithine birds from the Upper Cretaceous of the Southern Hemisphere". Cretaceous Research. 86: 178–185. doi:10.1016/j.cretres.2018.02.013. hdl:2328/37887.
  313. N. V. Zelenkov; T. A. Stidham (2018). "Possible filter-feeding in the extinct Presbyornis and the evolution of Anseriformes (Aves)". Zoologicheskii Zhurnal. 97 (8): 943–956. doi:10.1134/s0044513418080159.
  314. Janet C. Buckner; Ryan Ellingson; David A. Gold; Terry L. Jones; David K. Jacobs (2018). "Mitogenomics supports an unexpected taxonomic relationship for the extinct diving duck Chendytes lawi and definitively places the extinct Labrador Duck". Molecular Phylogenetics and Evolution. 122: 102–109. doi:10.1016/j.ympev.2017.12.008. PMID 29247849.
  315. L. Schmidt (2018). "A biological origin for gravel mounds in inland Australia". Australian Journal of Earth Sciences. 65 (5): 607–617. Bibcode:2018AuJES..65..607S. doi:10.1080/08120099.2018.1460865.
  316. Daniel J. Field; Allison Y. Hsiang (2018). "A North American stem turaco, and the complex biogeographic history of modern birds". BMC Evolutionary Biology. 18 (1): 102. doi:10.1186/s12862-018-1212-3. PMC 6016133. PMID 29936914.
  317. Ursula B. Göhlich; Gerald Mayr (2018). "The alleged early Miocene Auk Petralca austriaca is a Loon (Aves, Gaviiformes): restudy of a controversial fossil bird". Historical Biology: An International Journal of Paleobiology. 30 (8): 1076–1083. doi:10.1080/08912963.2017.1333610.
  318. Jordi Alexis Garcia Marsà; Claudia P. Tambussi; Ignacio A. Cerda (2018). "First evidence of globuli ossei in bird (Aves, Spheniciformes). Implications on paleohistology and bird behaviour". Historical Biology: An International Journal of Paleobiology. 32 (4): 570–573. doi:10.1080/08912963.2018.1508288.
  319. Federico J. Degrange; Daniel T. Ksepka; Claudia P. Tambussi (2018). "Redescription of the oldest crown clade penguin: cranial osteology, jaw myology, neuroanatomy, and phylogenetic affinities of Madrynornis mirandus". Journal of Vertebrate Paleontology. 38 (2): e1445636. doi:10.1080/02724634.2018.1445636.
  320. Theresa L. Cole; Jonathan M. Waters; Lara D. Shepherd; Nicolas J. Rawlence; Leo Joseph; Jamie R. Wood (2018). "Ancient DNA reveals that the 'extinct' Hunter Island penguin (Tasidyptes hunteri) is not a distinct taxon". Zoological Journal of the Linnean Society. 182 (2): 459–464. doi:10.1093/zoolinnean/zlx043.
  321. Yuesong Gao; Lianjiao Yang; Jianjun Wang; Zhouqing Xie; Yuhong Wang; Liguang Sun (2018). "Penguin colonization following the last glacial-interglacial transition in the Vestfold Hills, East Antarctica". Palaeogeography, Palaeoclimatology, Palaeoecology. 490: 629–639. Bibcode:2018PPP...490..629G. doi:10.1016/j.palaeo.2017.11.053.
  322. Steven D. Emslie; Ashley McKenzie; William P. Patterson (2018). "The rise and fall of an ancient Adélie penguin 'supercolony' at Cape Adare, Antarctica". Royal Society Open Science. 5 (4): 172032. Bibcode:2018RSOS....572032E. doi:10.1098/rsos.172032. PMC 5936921. PMID 29765656.
  323. Yuesong Gao; Lianjiao Yang; Zhouqing Xie; Louise Emmerson; Colin Southwell; Yuhong Wang; Liguang Sun (2018). "Last millennium Adélie penguin mortality and colony abandonment events on Long Peninsula, East Antarctica". Journal of Geophysical Research: Biogeosciences. 123 (9): 2878–2889. Bibcode:2018JGRG..123.2878G. doi:10.1029/2018JG004550.
  324. Gerald Mayr; James L. Goedert (2018). "First record of a tarsometatarsus of Tonsala hildegardae (Plotopteridae) and other avian remains from the late Eocene/early Oligocene of Washington State (USA)". Geobios. 51 (1): 51–59. doi:10.1016/j.geobios.2017.12.006.
  325. Tatsuro Ando; Keisaku Fukata (2018). "A well-preserved partial scapula from Japan and the reconstruction of the triosseal canal of plotopterids". PeerJ. 6: e5391. doi:10.7717/peerj.5391. PMC 6112113. PMID 30155348.
  326. Junya Watanabe; Hiroshige Matsuoka; Yoshikazu Hasegawa (2018). "Pleistocene fossils from Japan show that the recently extinct Spectacled Cormorant (Phalacrocorax perspicillatus) was a relict". The Auk. 135 (4): 895–907. doi:10.1642/AUK-18-54.1. hdl:2433/233910.
  327. Jörn Theuerkauf; Roman Gula (2018). "Indirect evidence for body size reduction in a flightless island bird after human colonisation". Journal of Ornithology. 159 (3): 823–826. doi:10.1007/s10336-018-1545-0.
  328. Antoine Louchart; Fabiola Bastian; Marilia Baptista; Perle Guarino‐Vignon; Julian P. Hume; Cécile Jacot‐des‐Combes; Cécile Mourer‐Chauviré; Catherine Hänni; Morgane Ollivier (2018). "Ancient DNA reveals the origins, colonization histories, and evolutionary pathways of two recently extinct species of giant scops owl from Mauritius and Rodrigues Islands (Mascarene Islands, south‐western Indian Ocean)". Journal of Biogeography. 45 (12): 2678–2689. doi:10.1111/jbi.13450.
  329. Ashley Kruger; Shaw Badenhorst (2018). "Remains of a barn owl (Tyto alba) from the Dinaledi Chamber, Rising Star Cave, South Africa". South African Journal of Science. 114 (11/12): Art. #5152. doi:10.17159/sajs.2018/5152.
  330. Gerald Mayr (2018). "New data on the anatomy and palaeobiology of sandcoleid mousebirds (Aves, Coliiformes) from the early Eocene of Messel". Palaeobiodiversity and Palaeoenvironments. 98 (4): 639–651. doi:10.1007/s12549-018-0328-1.
  331. Gerald Mayr; Stig A. Walsh (2018). "Exceptionally well-preserved early Eocene fossil reveals cranial and vertebral features of a stem group roller (Aves: Coraciiformes)". PalZ. 92 (4): 715–726. doi:10.1007/s12542-018-0424-6.
  332. Washington Jones; Andrés Rinderknecht; Herculano Alvarenga; Felipe Montenegro; Martín Ubilla (2018). "The last terror birds (Aves, Phorusrhacidae): new evidence from the late Pleistocene of Uruguay". PalZ. 92 (2): 365–372. doi:10.1007/s12542-017-0388-y.
  333. Ulf S. Johansson; Per G. P. Ericson; Mozes P. K. Blom; Martin Irestedt (2018). "The phylogenetic position of the extinct Cuban Macaw Ara tricolor based on complete mitochondrial genome sequences". Ibis. 160 (3): 666–672. doi:10.1111/ibi.12591.
  334. Richard J. George; Stephen Plog; Adam S. Watson; Kari L. Schmidt; Brendan J. Culleton; Thomas K. Harper; Patricia A. Gilman; Steven A. LeBlanc; George Amato; Peter Whiteley; Logan Kistler; Douglas J. Kennett (2018). "Archaeogenomic evidence from the southwestern US points to a Pre-Hispanic scarlet macaw breeding colony". Proceedings of the National Academy of Sciences of the United States of America. 115 (35): 8740–8745. doi:10.1073/pnas.1805856115. PMC 6126748. PMID 30104352.
  335. Kari A. Prassack; Michael C. Pante; Jackson K. Njau; Ignacio de la Torre (2018). "The paleoecology of Pleistocene birds from Middle Bed II, at Olduvai Gorge, Tanzania, and the environmental context of the Oldowan-Acheulean transition". Journal of Human Evolution. 120: 32–47. doi:10.1016/j.jhevol.2017.11.003. PMID 29458978.
  336. Lisa Carrera; Marco Pavia; Matteo Romandini; Marco Peresani (2018). "Avian fossil assemblages at the onset of the LGM in the eastern Alps: A palaecological contribution from the Rio Secco Cave (Italy)". Comptes Rendus Palevol. 17 (3): 166–177. doi:10.1016/j.crpv.2017.10.006.
  337. Jessica A. Oswald; David W. Steadman (2018). "The late Quaternary bird community of New Providence, Bahamas". The Auk. 135 (2): 359–377. doi:10.1642/AUK-17-185.1.
  338. Julian P. Hume; David Martill; Richard Hing (2018). "A terrestrial vertebrate palaeontological review of Aldabra Atoll, Aldabra Group, Seychelles". PLOS ONE. 13 (3): e0192675. Bibcode:2018PLoSO..1392675H. doi:10.1371/journal.pone.0192675. PMC 5873930. PMID 29590117.
  339. Junya Watanabe; Hiroshige Matsuoka; Yoshikazu Hasegawa (2018). "Pleistocene non-passeriform landbirds from Shiriya, northeast Japan". Acta Palaeontologica Polonica. 63 (3): 469–491. doi:10.4202/app.00509.2018.
  340. Junya Watanabe; Hiroshige Matsuoka; Yoshikazu Hasegawa (2018). "Pleistocene seabirds from Shiriya, northeast Japan: systematics and oceanographic context". Historical Biology: An International Journal of Paleobiology. 32 (5): 671–729. doi:10.1080/08912963.2018.1529764.
  341. Lisa Carrera; Marco Pavia; Marco Peresani; Matteo Romandini (2018). "Late Pleistocene fossil birds from Buso Doppio del Broion Cave (North-Eastern Italy): implications for palaeoecology, palaeoenvironment and palaeoclimate". Bollettino della Società Paleontologica Italiana. 57 (2): 145–174. doi:10.4435/BSPI.2018.10.
  342. Daniel R. Lawver; Clint A. Boyd (2018). "An avian eggshell from the Brule Formation (Oligocene) of North Dakota". Journal of Vertebrate Paleontology. 38 (4): (1)–(9). doi:10.1080/02724634.2018.1486848.
  343. Cécile Mourer‑Chauviré; Marie‑Françoise Bonifay (2018). "The birds from the Early Pleistocene of Ceyssaguet (Lavoûte‑sur‑Loire, Haute‑Loire, France): description of a new species of the genus Aquila". Quaternaire. 29 (3): 183–194.
  344. Alan J.D. Tennyson; Al A. Mannering (2018). "A new species of Pliocene shearwater (Aves: Procellariidae) from New Zealand" (PDF). Tuhinga: Records of the Museum of New Zealand. 29: 1–19.
  345. Nikita V. Zelenkov; Thomas A. Stidham; Nicolay V. Martynovich; Natalia V. Volkova; Qiang Li; Zhuding Qiu (2018). "The middle Miocene duck Chenoanas (Aves, Anatidae): new species, phylogeny and geographical range". Papers in Palaeontology. 4 (3): 309–326. doi:10.1002/spp2.1107.
  346. Jacqueline M.T. Nguyen; Michael Archer; Suzanne J. Hand (2018). "Quail-thrush birds from the Miocene of northern Australia". Acta Palaeontologica Polonica. 63 (3): 493–502. doi:10.4202/app.00485.2018.
  347. Stanislas Rigal; Patrick V. Kirch; Trevor H. Worthy (2018). "New prehistoric avifaunas from the Gambier Group, French Polynesia". Palaeontologia Electronica. 21 (3): Article number 21.3.43. doi:10.26879/892.
  348. Xiaoting Zheng; Jingmai K. O'Connor; Xiaoli Wang; Yan Wang; Zhonghe Zhou (2018). "Reinterpretation of a previously described Jehol bird clarifies early trophic evolution in the Ornithuromorpha". Proceedings of the Royal Society B: Biological Sciences. 285 (1871): 20172494. doi:10.1098/rspb.2017.2494. PMC 5805944. PMID 29386367.
  349. Jessie Atterholt; J. Howard Hutchison; Jingmai K. O’Connor (2018). "The most complete enantiornithine from North America and a phylogenetic analysis of the Avisauridae". PeerJ. 6: e5910. doi:10.7717/peerj.5910. PMC 6238772. PMID 30479894.
  350. Min Wang; Thomas A. Stidham; Zhonghe Zhou (2018). "A new clade of basal Early Cretaceous pygostylian birds and developmental plasticity of the avian shoulder girdle". Proceedings of the National Academy of Sciences of the United States of America. 115 (42): 10708–10713. doi:10.1073/pnas.1812176115. PMC 6196491. PMID 30249638.
  351. Natalia V. Volkova; Nikita V. Zelenkov (2018). "A scansorial passerine bird (Passeriformes, Certhioidea) from the uppermost Lower Miocene of Eastern Siberia". Paleontological Journal. 52 (1): 58–65. doi:10.1134/S0031030118010148.
  352. Ellen K. Mather; Alan J. D. Tennyson; R. Paul Scofield; Vanesa L. De Pietri; Suzanne J. Hand; Michael Archer; Warren D. Handley; Trevor H. Worthy (2018). "Flightless rails (Aves: Rallidae) from the early Miocene St Bathans Fauna, Otago, New Zealand". Journal of Systematic Palaeontology. 17 (5): 423–449. doi:10.1080/14772019.2018.1432710.
  353. Gerald Mayr; Vanesa L. De Pietri; Leigh Love; Al A. Mannering; R. Paul Scofield (2018). "A well-preserved new mid-Paleocene penguin (Aves, Sphenisciformes) from the Waipara Greensand in New Zealand". Journal of Vertebrate Paleontology. 37 (6): e1398169. doi:10.1080/02724634.2017.1398169.
  354. Jenő (Eugen) Kessler (2018). "Evolution and presence of diurnal predatory birds in the Carpathian Basin". Ornis Hungarica. 26 (1): 102–123. doi:10.1515/orhu-2018-0008.
  355. Zhiheng Li; Julia A. Clarke; Chad M. Eliason; Thomas A. Stidham; Tao Deng; Zhonghe Zhou (2018). "Vocal specialization through tracheal elongation in an extinct Miocene pheasant from China". Scientific Reports. 8 (1): Article number 8099. Bibcode:2018NatSR...8.8099L. doi:10.1038/s41598-018-26178-x. PMC 5970207. PMID 29802379.
  356. Oona M. Takano; David W. Steadman (2018). "Another new species of flightless Rail (Aves: Rallidae: Rallus) from Abaco, The Bahamas". Zootaxa. 4407 (3): 376–382. doi:10.11646/zootaxa.4407.3.5. PMID 29690183.
  357. N. V. Zelenkov (2018). "The earliest Asian duck (Anseriformes: Romainvilla) and the origin of Anatidae". Doklady Biological Sciences. 483 (1): 225–227. doi:10.1134/S0012496618060030. PMID 30603943.
  358. Hiroshige Matsuoka; Yoshikazu Hasegawa (2018). "Birds around the Minatogawa Man: the Late Pleistocene avian fossil assemblage of the Minatogawa Fissure, southern part of Okinawa Island, Central Ryukyu Islands, Japan" (PDF). Bulletin of Gunma Museum of Natural History. 22: 1–21.
  359. Vanesa L. De Pietri; R. Paul Scofield; Gavin J. Prideaux; Trevor H. Worthy (2018). "A new species of lapwing (Charadriidae: Vanellus) from the late Pliocene of central Australia". Emu - Austral Ornithology. 118 (4): 334–343. doi:10.1080/01584197.2018.1464373.
  360. James P. Hansford; Samuel T. Turvey (2018). "Unexpected diversity within the extinct elephant birds (Aves: Aepyornithidae) and a new identity for the world's largest bird". Royal Society Open Science. 5 (9): 181295. Bibcode:2018RSOS....581295H. doi:10.1098/rsos.181295. PMC 6170582. PMID 30839722.
  361. Zbigniew M. Bocheński; Teresa Tomek; Krzysztof Wertz; Johannes Happ; Małgorzata Bujoczek; Ewa Świdnicka (2018). "Articulated avian remains from the early Oligocene of Poland adds to our understanding of Passerine evolution". Palaeontologia Electronica. 21 (2): Article number 21.2.32A. doi:10.26879/843.
  362. Min Wang; Zhonghe Zhou (2018). "A new confuciusornithid (Aves: Pygostylia) from the Early Cretaceous increases the morphological disparity of the Confuciusornithidae". Zoological Journal of the Linnean Society. 185 (2): 417–430. doi:10.1093/zoolinnean/zly045.
  363. N. Adam Smith; Aj M. DeBee; Julia A. Clarke (2018). "Systematics and phylogeny of the Zygodactylidae (Aves, Neognathae) with description of a new species from the early Eocene of Wyoming, USA". PeerJ. 6: e4950. doi:10.7717/peerj.4950. PMC 6022727. PMID 29967716.
  364. Charlie A. Navarro; Elizabeth Martin-Silverstone; Thomas L. Stubbs (2018). "Morphometric assessment of pterosaur jaw disparity". Royal Society Open Science. 5 (4): 172130. Bibcode:2018RSOS....572130N. doi:10.1098/rsos.172130. PMC 5936930. PMID 29765665.
  365. Jordan Bestwick; David M. Unwin; Richard J. Butler; Donald M. Henderson; Mark A. Purnell (2018). "Pterosaur dietary hypotheses: a review of ideas and approaches". Biological Reviews. 93 (4): 2021–2048. doi:10.1111/brv.12431. PMC 6849529. PMID 29877021.
  366. Alexander W.A. Kellner (2015). "Comments on Triassic pterosaurs with discussion about ontogeny and description of new taxa". Anais da Academia Brasileira de Ciências. 87 (2): 669–689. doi:10.1590/0001-3765201520150307. PMID 26131631.
  367. Fabio M. Dalla Vecchia (2018). "Comments on Triassic pterosaurs with a commentary on the "ontogenetic stages" of Kellner (2015) and the validity of Bergamodactylus wildi". Rivista Italiana di Paleontologia e Stratigrafia. 124 (2): 317–341. doi:10.13130/2039-4942/10099.
  368. David M. Unwin; David M. Martill (2018). "Systematic reassessment of the first Jurassic pterosaur from Thailand". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 181–186. doi:10.1144/SP455.13. ISBN 978-1-78620-317-5.
  369. Kai R.K. Jäger; Helmut Tischlinger; Georg Oleschinski; P. Martin Sander (2018). "Goldfuß was right: Soft part preservation in the Late Jurassic pterosaur Scaphognathus crassirostris revealed by reflectance transformation imaging (RTI) and UV light and the auspicious beginnings of paleo-art". Palaeontologia Electronica. 21 (3): Article number 21.3.4T. doi:10.26879/713.
  370. Martill, David M.; Ibrahim, Nizar; Bouaziz, Samir (2018). "A giant pterosaur in the Early Cretaceous (Albian) of Tunisia". Journal of African Earth Sciences. 147: 331–337. Bibcode:2018JAfES.147..331M. doi:10.1016/j.jafrearsci.2018.05.008. ISSN 1464-343X.
  371. S. Christopher Bennett (2018). "New smallest specimen of the pterosaur Pteranodon and ontogenetic niches in pterosaurs". Journal of Paleontology. 92 (2): 254–271. doi:10.1017/jpa.2017.84.
  372. Dana J. Ehret; T. Lynn Harrell, Jr. (2018). "Feeding traces on a Pteranodon (Reptilia: Pterosauria) bone from the Late Cretaceous (Campanian) Mooreville Chalk in Alabama, USA". PALAIOS. 33 (9): 414–418. Bibcode:2018Palai..33..414E. doi:10.2110/palo.2018.024.
  373. David W.E. Hone; Mark P. Witton; Michael B. Habib (2018). "Evidence for the Cretaceous shark Cretoxyrhina mantelli feeding on the pterosaur Pteranodon from the Niobrara Formation". PeerJ. 6: e6031. doi:10.7717/peerj.6031. PMC 6296329. PMID 30581660.
  374. Leonardo D. Ortiz David; Bernardo J. González Riga; Alexander W.A. Kellner (2018). "Discovery of the largest pterosaur from South America". Cretaceous Research. 83: 40–46. doi:10.1016/j.cretres.2017.10.004.
  375. D. W. E. Hone; S. Jiang; X. Xu (2018). "A taxonomic revision of Noripterus complicidens and Asian members of the Dsungaripteridae". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 149–157. doi:10.1144/SP455.8. ISBN 978-1-78620-317-5.
  376. Richard Buchmann; Taissa Rodrigues; Sabrina Polegario; Alexander W.A. Kellner (2018). "New information on the postcranial skeleton of the Thalassodrominae (Pterosauria, Pterodactyloidea, Tapejaridae)". Historical Biology: An International Journal of Paleobiology. 30 (8): 1139–1149. doi:10.1080/08912963.2017.1343314.
  377. Rodrigo V. Pêgas; Fabiana R. Costa; Alexander W.A. Kellner (2018). "New information on the osteology and a taxonomic revision of the genus Thalassodromeus (Pterodactyloidea, Tapejaridae, Thalassodrominae)". Journal of Vertebrate Paleontology. 38 (2): e1443273. doi:10.1080/02724634.2018.1443273.
  378. Gregory F. Funston; Elizabeth Martin-Silverstone; Philip J. Currie (2017). "The first pterosaur pelvic material from the Dinosaur Park Formation (Campanian) and implications for azhdarchid locomotion". FACETS. 2: 559–574. doi:10.1139/facets-2016-0067.
  379. Gregory F. Funston; Elizabeth Martin-Silverstone; Philip J. Currie (2018). "Correction: The first pterosaur pelvic material from the Dinosaur Park Formation (Campanian) and implications for azhdarchid locomotion". FACETS. 3: 192–194. doi:10.1139/facets-2018-0006.
  380. Mátyás Vremir; Gareth Dyke; Zoltán Csiki‐Sava; Dan Grigorescu; Eric Buffetaut (2018). "Partial mandible of a giant pterosaur from the uppermost Cretaceous (Maastrichtian) of the Hațeg Basin, Romania". Lethaia. 51 (4): 493–503. doi:10.1111/let.12268.
  381. Nicholas R. Longrich; David M. Martill; Brian Andres (2018). "Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary". PLOS Biology. 16 (3): e2001663. doi:10.1371/journal.pbio.2001663. PMC 5849296. PMID 29534059.
  382. Brooks B. Britt; Fabio M. Dalla Vecchia; Daniel J. Chure; George F. Engelmann; Michael F. Whiting; Rodney D. Scheetz (2018). "Caelestiventus hanseni gen. et sp. nov. extends the desert-dwelling pterosaur record back 65 million years". Nature Ecology & Evolution. 2 (9): 1386–1392. doi:10.1038/s41559-018-0627-y. PMID 30104753.
  383. Megan L. Jacobs; David M. Martill; Nizar Ibrahim; Nick Longrich (2019). "A new species of Coloborhynchus (Pterosauria, Ornithocheiridae) from the mid-Cretaceous of North Africa". Cretaceous Research. 95: 77–88. doi:10.1016/j.cretres.2018.10.018.
  384. Michael O’Sullivan; David M. Martill (2018). "Pterosauria of the Great Oolite Group (Bathonian, Middle Jurassic) of Oxfordshire and Gloucestershire, England". Acta Palaeontologica Polonica. 63 (4): 617–644. doi:10.4202/app.00490.2018.
  385. Romain Vullo; Géraldine Garcia; Pascal Godefroit; Aude Cincotta; Xavier Valentin (2018). "Mistralazhdarcho maggii, gen. et sp. nov., a new azhdarchid pterosaur from the Upper Cretaceous of southeastern France". Journal of Vertebrate Paleontology. 38 (4): (1)–(16). doi:10.1080/02724634.2018.1502670.
  386. Stanislas Rigal; David M. Martill; Steven C. Sweetman (2018). "A new pterosaur specimen from the Upper Tunbridge Wells Sand Formation (Cretaceous, Valanginian) of southern England and a review of Lonchodectes sagittirostris (Owen 1874)". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 221–232. doi:10.1144/SP455.5. ISBN 978-1-78620-317-5.
  387. Junchang Lü; Qingjin Meng; Baopeng Wang; Di Liu; Caizhi Shen; Yuguang Zhang (2018). "Short note on a new anurognathid pterosaur with evidence of perching behaviour from Jianchang of Liaoning Province, China". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 95–104. doi:10.1144/SP455.16. ISBN 978-1-78620-317-5.
  388. David M. Martill; David M. Unwin; Nizar Ibrahim; Nick Longrich (2018). "A new edentulous pterosaur from the Cretaceous Kem Kem beds of south eastern Morocco". Cretaceous Research. 84: 1–12. doi:10.1016/j.cretres.2017.09.006.
  389. Sterling J. Nesbitt; Richard J. Butler; Martín D. Ezcurra; Alan J. Charig; Paul M. Barrett (2018). "The anatomy of Teleocrater rhadinus, an early avemetatarsalian from the lower portion of the Lifua Member of the Manda Beds (Middle Triassic)" (PDF). Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 142–177. doi:10.1080/02724634.2017.1396539.
  390. Rodrigo Temp Müller; Max Cardoso Langer; Sérgio Dias-da-Silva (2018). "Ingroup relationships of Lagerpetidae (Avemetatarsalia: Dinosauromorpha): a further phylogenetic investigation on the understanding of dinosaur relatives". Zootaxa. 4392 (1): 149–158. doi:10.11646/zootaxa.4392.1.7. PMID 29690420.
  391. Adam D. Marsh (2018). "A new record of Dromomeron romeri Irmis et al., 2007 (Lagerpetidae) from the Chinle Formation of Arizona, U.S.A." PaleoBios. 35: ucmp_paleobios_42075.
  392. Federico L. Agnolín; Sebastián Rozadilla (2018). "Phylogenetic reassessment of Pisanosaurus mertii Casamiquela, 1967, a basal dinosauriform from the Late Triassic of Argentina". Journal of Systematic Palaeontology. 16 (10): 853–879. doi:10.1080/14772019.2017.1352623.
  393. Matthew G. Baron; Megan E. Williams (2018). "A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution". Acta Palaeontologica Polonica. 63 (1): 129–145. doi:10.4202/app.00372.2017.
  394. Grzegorz Niedźwiedzki; Ewa Budziszewska-Karwowska (2018). "A new occurrence of the Late Triassic archosaur Smok in southern Poland". Acta Palaeontologica Polonica. 63 (4): 703–712. doi:10.4202/app.00505.2018.
  395. Volkan Sarıgül; Federico Agnolín; Sankar Chatterjee (2018). "Description of a multitaxic bone assemblage from the Upper Triassic Post Quarry of Texas (Dockum group), including a new small basal dinosauriform taxon" (PDF). Historia Natural, Tercera Serie. 8 (1): 5–24.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.