2020 in archosaur paleontology

This article records new taxa of fossil archosaurs of every kind that are scheduled described during the year 2020, as well as other significant discoveries and events related to paleontology of archosaurs that are scheduled to occur in the year 2020.

List of years in archosaur paleontology
In reptile paleontology
2017
2018
2019
2020
2021
2022
2023
In paleontology
2017
2018
2019
2020
2021
2022
2023
In science
2017
2018
2019
2020
2021
2022
2023

General research

  • A study on the evolution of metabolic rates along the bird stem lineage is published by Rezende et al. (2020).[1]
  • A review of the anatomy of the respiratory systems and mechanics of breathing in living and fossil archosaurs, evaluating their physiological implications, is published by Brocklehurst et al. (2020).[2]
  • A study aiming to determine the relationship between atmospheric O2 and CO2 levels during the Late Triassic and the evolution of skeletal pneumaticity and respiratory systems in theropod dinosaurs and in paracrocodylomorphs is published by Hudgins, Uhen & Hinnov (2020).[3]
  • A study on sexual dimorphism in the skulls of extant gharials, and on its implications for the feasibility of detecting dimorphism in non-avian dinosaurs, is published by Hone et al. (2020).[4]
  • A study on the microstructure of teeth of Mesozoic birds and non-avian paravian theropods is published by Li et al. (2020), who evaluate the implications of their findings for the knowledge of differences in feeding ecology of early birds and closely related paravians.[5]
  • A study on the phylogenetic distribution and structural diversity of medullary bone in extant birds, reevaluating the criteria proposed to allow the identification of medullary bone in fossils of avemetatarsalians, is published by Canoville, Schweitzer & Zanno (2020).[6]
  • An archosaur egg of uncertain affinities, with eggshell containing several parallel dark bands, is reported from the Upper Cretaceous of South Korea by Choi et al. (2020), who investigate the origin of the dark bands, and name a new ootaxon Aenigmaoolithus vesicularis.[7]
  • A study on the relationship between the curvatures of ungual bones and behaviour in extant birds and squamates, evaluating its implications for the knowledge of the lifestyle of Mesozoic birds and non-avian theropods, is published by Cobb & Sellers (2020).[8]
  • Xing, Cockx & McKellar (2020) describe a large sample set of 150 specimens of the Cretaceous Burmese amber containing feathers most likely belonging to non-avian dinosaurs and enantiornithean birds.[9]

Pseudosuchians

Research

  • Redescription of the anatomy of the postcranial skeleton of Riojasuchus tenuisceps, and a study on the phylogenetic affinities of ornithosuchids, is published by von Baczko, Desojo & Ponce (2020).[10]
  • A three-dimensional reconstruction of the armour plates around the tail of Stagonolepis robertsoni is presented by Keeble & Benton (2020).[11]
  • Taxonomic revision, anatomical description, and a study on the phylogenetic relationships of the type and referred materials of Prestosuchus from the original collections of Friedrich von Huene is published by Desojo, von Baczko & Rauhut (2020), who transfer the species Stagonosuchus nyassicus to the genus Prestosuchus.[12]
  • A study on the anatomy of the braincase of Almadasuchus figarii, and on early evolution of cranial pneumaticity in Crocodylomorpha, is published by Leardi, Pol & Clark (2020).[13]
  • A study on the impact of the habitat on the evolution of body size in Crocodyliformes, based on data from extant and fossil taxa, is published by Gearty & Payne (2020).[14]
  • New fossil material of crocodylomorphs from the Birket Qarun Formation in the Fayum Depression (Egypt), including the first record of a sebecosuchian from the late Eocene of Africa, is described by Stefanic et al. (2020).[15]
  • A study on the anatomy of the skull and on the phylogenetic relationships of Araripesuchus buitreraensis, based on data from new as well as previously reported specimens, is published by Fernandez Dumont et al. (2020).[16]
  • A study on changes in the inner ear vestibular system, involved in sensing balance and equilibrium, throughout the evolutionary history of thalattosuchians is published by Schwab et al. (2020).[17]
  • A revision of the genus Steneosaurus is published by Johnson, Young & Brusatte (2020), who designate S. rostromajor as the type species of this genus, consider S. rostromajor to be a nomen dubium and propose that the genus Steneosaurus is undiagnostic.[18]
  • Description of new fossil material of Teleidosaurus calvadosii from the middle Bathonian of Ecouché (Normandy, France) and a redescription of the anatomy of this species is published by Hua (2020).[19]
  • A study on the thermophysiology of metriorhynchids, as indicated by the oxygen isotope composition of the tooth enamel phosphate, is published by Séon et al. (2020).[20]
  • Fossil material of two large-bodied metriorhynchids is reported from lower Kimmeridgian sediments in Bavaria and Baden-Württemberg (Germany) by Abel, Sachs & Young (2020), who interpret these fossils as evidence of a new lineage of large-bodied geosaurines from the Kimmeridgian and Tithonian of Europe.[21]
  • Redescription of the holotype specimen of Enaliosuchus macrospondylus, a revision of the fossil material assigned to this species, and a review of the current knowledge of metriorhynchid diversity during the Cretaceous is published by Sachs, Young & Hornung (2020).[22]
  • A study aiming to determine whether notosuchians were warm-blooded, based on data from bone histology, is published by Cubo et al. (2020), who interpret their findings as indicating that notosuchians were likely to be ectotherms.[23]
  • A study on the anatomy and biomechanics of baurusuchid skulls, evaluating their implications for the knowledge of likely predatory behaviors of baurusuchids, is published by Montefeltro et al. (2020).[24]
  • New information on the anatomy of the endocranial cavities of Campinasuchus dinizi is presented by Fonseca et al. (2020).[25]
  • Pholidosaurid fossil material, representing the most recent record of this group reported so far, is described from the Paleocene (Danian) of Ouled Abdoun Basin (Morocco) by Jouve & Jalil (2020), who also reinterpret Dakotasuchus kingi, Woodbinesuchus byersmauricei and Sabinosuchus coahuilensis as pholidosaurids, and study the diversity of tethysuchians from the Late Jurassic to the early Paleogene.[26]
  • New specimen of Susisuchus anatoceps, displaying a non-eusuchian type palate (i.e. choana not entirely bounded by the pterygoids), is described by Montefeltro et al. (2020), who evaluate the implications of this finding for the knowledge of the anatomy of this taxon and the phylogenetic position of susisuchids.[27]
  • A study on skull anatomy and phylogenetic relationships of Bernissartia fagesii is published by Martin et al. (2020).[28]
  • Reconstruction of the internal cavities of the skull of Agaresuchus fontisensis, including the cavities that contained the brain, nerves and blood vessels, is presented by Serrano‐Martínez et al. (2020).[29]
  • New fossil material of Mourasuchus arendsi is described from the Miocene Urumaco Formation (Venezuela) by Cidade, Rincón & Solórzano (2020), who evaluate the implications of these fossils for the knowledge of the paleobiology of this species.[30]
  • A study on the shape and biomechanical properties of the humeri of mekosuchines and extant Australian crocodiles, and on their implications for the knowledge of the locomotion of mekosuchines, is published by Stein et al. (2020).[31]
  • Redescription of the anatomy and a study on the phylogenetic relationships of Crocodylus checchiai is published by Delfino et al. (2020).[32]
  • Fossil tracks produced by large crocodylomorphs, possibly moving bipedally, are described from the Lower Cretaceous Jinju Formation (South Korea) by Kim et al. (2020), who name a new ichnotaxon Batrachopus grandis.[33]
  • A study on the impact of recognition of cryptic species of extant crocodylians on interpretations of the crocodyliform fossil record is published by Brochu & Sumrall (2020).[34]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Bottosaurus fustidens[35]

Sp. nov

Valid

Cossette

Paleocene (Tiffanian)

Black Peaks

 United States
( Texas)

A caiman.

Deinosuchus schwimmeri[36] Sp. nov Valid Cossette & Brochu Late Cretaceous (Campanian) Coffee Sand
Mooreville
 United States
( Alabama
 Mississippi)

Dynamosuchus [37]

Gen. et sp. nov

Valid

Müller et al.

Late Triassic (Carnian)

Santa Maria

 Brazil

A member of the family Ornithosuchidae. The type species is D. collisensis.

Non-avialan dinosaurs

Research

  • A study comparing and testing for correlation between rates of morphological evolution and extinction at the species level in non-avian dinosaurs is published by Crouch (2020).[38]
  • A study on the biogeography of the Cretaceous Australian dinosaur fauna is published by Kubo (2020).[39]
  • A study on the evolutionary history of dinosaur integument, aiming to determine the most likely ancestral integumentary condition in dinosaurs, is published by Campione, Barrett & Evans (2020).[40]
  • A study aiming to determine dinosaur body temperatures on the basis of data from fossil eggshells, comparing them with paleoenvironmental temperatures, and evaluating their implications for the knowledge of dinosaur thermoregulation, is published by Dawson et al. (2020).[41]
  • Evidence for an originally non-biomineralized, soft-shelled nature of eggs of Mussaurus and Protoceratops is presented by Norell et al. (2020), who argue that the first dinosaur egg was soft-shelled, and that the calcified, hard-shelled dinosaur egg evolved independently at least three times throughout the Mesozoic era.[42]
  • A study on the trace elements and isotopic compositions of eggshells of dinosaur eggs from the Cretaceous Zhaoying Formation (Henan, China), evaluating their implications for reconstructions of local paleoenvironment, is published by He et al. (2020).[43]
  • A study on the affinities of putative gekkotan eggshells from the Late Cretaceous of Europe is published by Choi et al. (2020), who interpret the fossil material of Pseudogeckoolithus as theropod eggshells.[44]
  • Remains of small theropod eggs, providing new information on the diversity of small dinosaurs in the Hyogo region (Japan), are reported from the Cretaceous (Albian) of the Kamitaki Egg Quarry (Ohyamashimo Formation) by Tanaka et al. (2020), who name new ootaxa Himeoolithus murakamii (the smallest non-avian theropod egg known to date), Nipponoolithus ramosus and Subtiliolithus hyogoensis.[45]
  • Chapelle, Fernandez & Choiniere (2020) evaluate the possibility of estimating the developmental stage of dinosaur embryos, on the basis of a study of skull ossification sequences in embryos of Massospondylus carinatus and extant saurians.[46]
  • A study on the skeletal anatomy and phylogenetic relationships of Daemonosaurus chauliodus is published by Nesbitt & Sues (2020).[47]
  • A study on the evolutionary trends and functional relationships between giant body size and hip anatomy in saurischians is published by Tsai et al. (2020).[48]
  • A study on the metabolism of Coelophysis and Plateosaurus, aiming to determine whether the absence of large sauropodomorph dinosaurs in the tropical to subtropical latitudes during the Late Triassic (e.g. the Chinle Formation) was caused by physiological limitations, is published by Lovelace et al. (2020).[49]
  • A study on locomotion in non-avian theropods, aiming to determine the selective pressures that influenced evolution of limb length and proportions of limb components in theropods, is published by Dececchi et al. (2020).[50]
  • The discovery of sternal plates of Tawa hallae from the Late Triassic of New Mexico and Arizona, representing the oldest known dinosaur sternal plates described so far, is reported by Bradley et al. (2020), who note the presence of morphological features similar to sternal traits in avialans.[51]
  • A study on the anatomy and phylogenetic relationships of Dilophosaurus wetherilli, based on data from the holotype, referred, and previously undescribed specimens from the Kayenta Formation, is published by Marsh & Rowe (2020).[52]
  • Redescription of the anatomy, revision of the taxonomy and a study on the phylogenetic relationships of the genus Sarcosaurus is published by Ezcurra et al. (2020).[53]
  • New fossil material of theropod dinosaurs representing a wide taxonomic range is reported from the Late Jurassic of the Langenberg Quarry (Lower Saxony, Germany) by Evers & Wings (2020), who interpret these fossils as evidence of the presence of several taxa of theropods in the Late Jurassic archipelago in the area of Central Europe.[54]
  • A study on theropod bite marks on Late Jurassic vertebrate fossils from the Mygatt-Moore Quarry (Colorado, United States), the identification of the trace makers and their feeding ecology is published by Drumheller et al. (2020), who report possible evidence of cannibalism in Allosaurus.[55]
  • A vertebra of an elaphrosaurine theropod is described from the Lower Cretaceous (Albian) Eumeralla Formation (Victoria, Australia) by Poropat et al. (2020), representing the first record of Elaphrosaurinae from Australia reported so far.[56]
  • New theropod fossil material is reported from the Griman Creek Formation by Brougham, Smith & Bell (2020), who interpret it as evidence of the presence of noasaurids in Australia during the Cretaceous.[57]
  • A study on a row of large foramina on the external surface of the skull of Skorpiovenator bustingorryi is published by Cerroni et al. (2020), who report evidence indicating that these foramina were linked to an internal canal that ran across the nasal bones, which they interpret as indicative of the presence of blood vessels and nerves, and attempt to determine possible biological significance of this neurovascular system.[58]
  • Almost complete skeleton of Majungasaurus crenatissimus preserving evidence of multiple pre-mortem pathologies is described from the Upper Cretaceous Maevarano Formation (Madagascar) by Gutherz et al. (2020), who interpret these pathologies as most likely to be the result of multiple non-fatal events experienced during the life of the individual, rather than a single traumatic incident.[59]
  • Hornung (2020) interprets the holotype specimen of "Ornithocheirus" hilsensis as a partial phalanx of a large-sized theropod, making it one of the earliest dinosaur discoveries in Germany and one of the few records of large-sized theropods near the Valanginian/Hauterivian boundary of Central Europe.[60]
  • Pereira et al. (2020) describe theropod fossil material from the Albian-Cenomanian Açu Formation (Brazil), and evaluate the diversity of theropods from this formation.[61]
  • A study on the anatomy of the braincase of Irritator challengeri, and on its implications for the knowledge of the neuroanatomy and ecology of this dinosaur, is published by Schade, Rauhut & Evers (2020).[62]
  • A study on the anatomy of the tail of Spinosaurus aegyptiacus is published by Ibrahim et al. (2020), who present evidence of tall neural spines and elongate chevrons forming a large, flexible fin-like organ, interpreted by the authors as evidence of adaptation to tail-propelled aquatic locomotion.[63]
  • A study on the taxonomic status of spinosaurs from the Kem Kem Group (Morocco) is published by Smyth, Ibrahim & Martill (2020), who consider Spinosaurus maroccanus and Sigilmassasaurus brevicollis to be junior synonyms of Spinosaurus aegyptiacus.[64]
  • A study on the anatomy of teeth of Sinraptor dongi, comparing it with dentition of other theropods and evaluating its implications for the knowledge of the feeding ecology of S. dongi, is published by Hendrickx et al. (2020).[65]
  • A revision of putative carcharodontosaurid teeth from the Upper Cretaceous Bauru Group (Brazil) is published by Delcourt et al. (2020), who interpret the studied fossil material as more likely to belong to abelisaurid theropods.[66]
  • A study on an indeterminate megaraptoran specimen from the Winton Formation (Australia) is published by White et al. (2020), who interpret this finding as evidence of either ontogenetic or intraspecific variation in Australovenator, or the presence of a second megaraptorid taxon in the Winton Formation.[67]
  • A study on the pneumaticity of the sacrum and tail of Aoniraptor libertatem, and on its implications for the knowledge of the evolution of pneumaticity through Theropoda, is published by Rolando, Marsà & Novas (2020).[68]
  • A study on the endocranial anatomy of Bistahieversor sealeyi, evaluating its implications for the knowledge of the evolution of the brains and sinuses of tyrannosauroids, is published by McKeown et al. (2020).[69]
  • A metatarsal bone of a young tyrannosaurid theropod, assigned to a very small juvenile Gorgosaurus is described from the Campanian Dinosaur Park Formation (Alberta, Canada) by Yun (2020). [70]
  • A study on the proposed autapomorphies of Dynamoterror dynastes is published by Yun (2020), who determined a taxonomic name to be a nomen dubium.[71]
  • A study on the bone microstructure of two half-grown specimens of Tyrannosaurus rex, evaluating its implications for the knowledge of the early life history of members of this species and the taxonomic validity of Nanotyrannus lancensis, is published by Woodward et al. (2020).[72]
  • A study on changes in skeleton of Tyrannosaurus rex during its growth, aiming to assign known specimens of this taxon to specific growth categories, is published by Carr (2020).[73]
  • A study on the anatomy of the integumentary structures of Juravenator starki and Sciurumimus albersdoerferi from the Kimmeridgian Torleite Formation of southern Germany is published by Foth et al. (2020).[74]
  • Partial skeleton of an oviraptorosaur theropod closely associated with two eggs (one within the pelvic canal and the other just posterior to it) is described from the Upper Cretaceous Nanxiong Formation (China) by Jin et al. (2020), who note the complete absence of medullary bone in this egg-bearing specimen.[75]
  • New fossil material of Chirostenotes pergracilis, representing the first associated mandibular and postcranial material of a caenagnathid from the Dinosaur Park Formation (Alberta, Canada), is described by Funston & Currie (2020), who evaluate the implications of these fossils for the knowledge of taxonomy and diversity of caenagnathids from the Dinosaur Park Formation and the growth patterns of Chirostenotes pergracilis.[76]
  • Description of new caenagnathid fossil material from the Dinosaur Park Formation (Alberta, Canada), providing new information on pelvic anatomy of caenagnathids, is published by Rhodes, Funston & Currie (2020).[77]
  • Description of a partial skeleton of a caenagnathid theropod from the Upper Cretaceous Hell Creek Formation (Montana, United States) and study on the bone histology of this specimen is published by Cullen et al. (2020), who evaluate the implications of their findings for the knowledge of the utility of size as a determinant for referral of incomplete or fragmentary skeletal remains to specific or new coelurosaur taxa.[78]
  • New theropod teeth, possibly belonging to members of the family Dromaeosauridae and representing the first record of that group from the southern Junggar Basin, are reported from the Upper Jurassic Qigu Formation (China) by Maisch & Matzke (2020).[79]
  • A study on the facial pneumatic features of members of the family Dromaeosauridae, and on the evolutionary history of these features, is published by Brownstein (2020).[80]
  • A study on the differences in the locomotor and predatory specializations of eudromaeosaurs and unenlagiines, as indicated by the anatomy of their hindlimbs, is published by Gianechini, Ercoli & Díaz‐Martínez (2020).[81]
  • A study on eudromaeosaurian maxillae, aiming to determine the extent to which maxillae can be used to draw ecological and phylogenetic inferences about dromaeosaurids, is published by Powers, Sullivan & Currie (2020).[82]
  • Evidence of sequential wing feather molt in a specimen of Microraptor is presented by Kiat et al. (2020), who evaluate the implications of this finding for the knowledge of the ecology and locomotion of this theropod.[83]
  • Partial dentary of a juvenile saurornitholestine dromaeosaurid is described from the Upper Cretaceous Prince Creek Formation (Alaska, United States) by Chiarenza et al. (2020), representing the first confirmed non-dental fossil specimen of a member of Dromaeosauridae in the Arctic.[84]
  • A study testing for dietary changes through growth in Deinonychus antirrhopus is published by Frederickson, Engel & Cifelli (2020).[85]
  • A study on the anatomy of the hindbrain and inner ear of Velociraptor mongoliensis, evaluating its implications for the knowledge of the trophic ecology and sensory aptitude of this theropod, is published by King et al. (2020).[86]
  • Description of the anatomy of the skeleton of Rahonavis ostromi is published by Forster et al. (2020).[87]
  • A study on the chemical preservation of fossil feathers preserved in association with the skeleton of Anchiornis huxleyi is published by Cincotta et al. (2020).[88]
  • A study on the quality of the sauropodomorph fossil record is published by Cashmore et al. (2020).[89]
  • A study on the morphological variation of Plateosaurus occurring at the genus level, as indicated by data on the shape variation of a sample of limb long bones, is published by Lefebvre et al. (2020).[90]
  • A study on teeth development in embryos of Lufengosaurus is published by Reisz et al. (2020).[91]
  • A study on the histology of the humeri of two basal sauropod specimens from the Jurassic of Niger and Thailand, reporting evidence of a layer of the radial fibrolamellar bone buried in the outer cortex of these bones, is published by Jentgen-Ceschino, Stein & Fischer (2020), who interpret their findings as evidence of these sauropods being affected by pathologies similar to Ewing's sarcoma and avian osteopetrosis or haemangioma.[92]
  • A study comparing articulation and range of motion of necks of extant giraffes and Spinophorosaurus nigerensis is published by Vidal et al. (2020).[93]
  • A study on the body plan, functional morphology of the neck and feeding capabilities of Spinophorosaurus nigerensis is published by Vidal et al. (2020).[94]
  • A study on the skeletal anatomy and phylogenetic relationships of Klamelisaurus gobiensis is published by Moore et al. (2020).[95]
  • Two vertebrae of diplodocoid sauropods are described from the Middle Jurassic (Callovian) Podosinki Formation (Russia) by Averianov & Zverkov (2020), who evaluate the implications of this finding for the knowledge of the initial radiation of Diplodocoidea.[96]
  • Baron (2020) argues that the elongate tails of diplodocid sauropods were used for herding co-ordination.[97]
  • A review of the distribution of the Cretaceous fossils of rebbachisaurid sauropods is published by Pereira et al. (2020), who report the first occurrence of a rebbachisaurid from the Açu Formation (Potiguar Basin, Brazil), and discuss its paleobiogeographic implications.[98]
  • A reconstruction of the epaxial and hypaxial musculature of the tail of Giraffatitan brancai is published by Díez Díaz et al. (2020).[99]
  • A large sauropod humerus, probably belonging to a member of the species Fusuisaurus zhaoi, is described from the Lower Cretaceous Xinlong Formation (Guangxi, China) by Mo et al. (2020).[100]
  • A study on histology and affinities of two bone fragments from the Upper Cretaceous (lower Santonian to/or lower Campanian) of the Western Srednogorie (Bulgaria) is published by Nikolov et al. (2020), who interpret these fossils as bones of a titanosaur sauropod, coming from a time interval when sauropods are rare in the fossil record of Europe.[101]
  • Voegele et al. (2020) reconstruct the forelimb and shoulder girdle musculature of Dreadnoughtus schrani.[102]
  • A study on the microstructure of the tooth enamel of Manidens condorensis, evaluating its implications for the knowledge of the evolution of tooth enamel in Ornithischia, is published by Becerra & Pol (2020).[103]
  • A study on the structure and development of the dermal skeleton of Scelidosaurus harrisonii is published by Norman (2020).[104]
  • An isolated caudal vertebra representing the first evidence of the presence of an ankylosaur in the Upper Jurassic Qigu Formation (China) is described by Augustin et al. (2020).[105]
  • Fossil stomach contents preserved within the abdominal cavity of the holotype specimen of Borealopelta markmitchelli are described by Brown et al. (2020).[106]
  • Description of the anatomy of braincases of three specimens of Bissektipelta archibaldi is published by Kuzmin et al. (2020).[107]
  • A study on the phylogenetic relationships of cerapodan ornithischians is published by Dieudonné et al. (2020).[108]
  • A study on the bone histology and probable life history of Jeholosaurus shangyuanensis is published by Han et al. (2020).[109]
  • A study on the bone microstructure of Mongolian hadrosauroid dinosaurs, evaluating its implications for the knowledge of growth strategies and evolution of gigantism in hadrosauroids, is published by Słowiak et al. (2020).[110]
  • Brownstein (2020) describes new fossil material of hadrosauromorphs from the Maastrichtian New Egypt Formation (New Jersey, United States), including a skeleton of a specimen which was probably a small-bodied adult hadrosauromorph from a lineage outside Hadrosauridae and fossils of juvenile hadrosauromorphs.[111]
  • A study on the anatomy of the tail of Tethyshadros insularis is published by Dalla Vecchia (2020).[112]
  • A study on pathologies affecting two hadrosaurid vertebrae from the Dinosaur Provincial Park (Alberta, Canada) is published by Rothschild et al. (2020), who consider Langerhans cell histiocytosis to be the most likely diagnosis, making it the first case of LCH recognized in a dinosaur so far.[113]
  • A study on a set of fused hadrosaur vertebrae with fragments of a tooth of Tyrannosaurus rex scattered through the intervertebral space is published by Rothschild et al. (2020), who interpret this findings as evidence indicating that the space between the vertebrae was not occupied by intervertebral discs, but rather by an articular space similar to that in modern reptiles.[114]
  • A study on the migratory behaviours of hadrosaurs, as indicated by strontium isotope data from hadrosaur teeth from the Late Cretaceous of Alberta (Canada), is published by Terrill, Henderson & Anderson (2020).[115]
  • A study on the anatomy of fossils of Ugrunaaluk kuukpikensis and on the taxonomic status of this species is published by Takasaki et al. (2020), who consider Ugrunaaluk to be a junior synonym of the genus Edmontosaurus.[116]
  • Evidence of pre-mortem traumatic injuries in multiple skeletal elements (especially in tail vertebrae) of Edmontosaurus annectens from the Lance Formation (Wyoming, United States) is presented by Siviero et al. (2020).[117]
  • A study on the taphonomy and depositional history of an extensive Maastrichtian bonebed in the Lance Formation of eastern Wyoming dominated by fossils of Edmontosaurus annectens is published by Snyder et al. (2020).[118]
  • A study on the interior structure of the nasal spine of Tsintaosaurus spinorhinus is published by Zhang et al. (2020).[119]
  • Evidence of preservation of proteins, chromosomes and chemical markers of DNA in the cartilage of a nestling of Hypacrosaurus stebingeri from the Campanian Two Medicine Formation (Montana, United States) is presented by Bailleul et al. (2020).[120]
  • A study on patterns of morphological variation of the ceratopsian frill, and on its implications for the knowledge of the ontogeny and evolution of this structure, is published by Prieto‐Márquez et al. (2020).[121]
  • New protoceratopsid specimens are described from the Üüden Sair and Zamyn Khond localities (Mongolia) by Czepiński (2020), who evaluates the implications of these specimens for correlation of fossil sites of the Djadochta Formation, and interprets one of these specimens as probable evidence of an anagenetic transition from Protoceratops andrewsi to Bagaceratops rozhdestvenskyi.[122]
  • Evidence of osteosarcoma affecting a specimen of Centrosaurus apertus, representing the first case of osteosarcoma in a dinosaur reported so far, is presented by Ekhtiari et al. (2020).[123]
  • Description of an immature specimen of Styracosaurus albertensis (the smallest known for this species) from the Campanian Dinosaur Park Formation (Alberta, Canada), and a study comparing the ontogeny and individual variation of the skulls in Styracosaurus and Centrosaurus, is published by Brown, Holmes & Currie (2020).[124]
  • A study on the causes of extinction of non-avian dinosaurs at the end of the Cretaceous, evaluating dinosaur habitability in the wake of climatic perturbations caused by various asteroid impact and Deccan volcanism scenarios, is published by Chiarenza et al. (2020).[125]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Abdarainurus[126]

Gen. et sp. nov

Valid

Averianov & Lopatin

Late Cretaceous

Alagteeg

 Mongolia

A sauropod dinosaur, probably a basal member of Titanosauria. Genus includes new species A. barsboldi.

Adratiklit[127]

Gen. et sp. nov

Valid

Maidment et al.

Middle Jurassic (Bathonian)

El Mers II

 Morocco

A member of Stegosauria. Genus includes new species A. boulahfa. Announced in 2019; the final version of the article naming was published in 2020.

Allosaurus jimmadseni[128]

Sp. nov

Valid

Chure & Loewen

Late Jurassic (Kimmeridgian)

Morrison

 United States
( Colorado
 Utah
 Wyoming)

Amanzia[129]

Gen. et comb. nov

Schwarz et al.

Late Jurassic (Kimmeridgian)

Reuchenette

  Switzerland

A non-neosauropod eusauropod of uncertain phylogenetic placement. The type species is "Ornithopsis" greppini Huene (1922).

Analong[130]

Gen. et sp. nov

Valid

Ren et al.

Middle Jurassic

Chuanjie

 China

A mamenchisaurid sauropod. Genus includes new species A. chuanjieensis.

Anhuilong[131]

Gen. et sp. nov

Valid

Ren, Huang & You

Middle Jurassic

Hongqin

 China

A mamenchisaurid sauropod. Genus includes new species A. diboensis. Announced in 2018; the final version of the article naming it was published in 2020.

Aratasaurus[132] Gen. et sp. nov Sayão et al. Early Cretaceous (Albian) Romualdo  Brazil A basal member of Coelurosauria. The type species is A. museunacionali.
Citipes[133] Gen. et comb. nov Funston Late Cretaceous (Campanian) Dinosaur Park  Canada
( Alberta)
An oviraptorosaur theropod. The type species is "Ornithomimus" elegans Parks (1933).

Dineobellator[134]

Gen. et sp. nov

Valid

Jasinski, Sullivan & Dodson

Late Cretaceous (Maastrichtian)

Ojo Alamo

 United States
( New Mexico)

A dromaeosaurid theropod. The type species is D. notohesperus.

Huinculsaurus[135]

Gen. et sp. nov

Valid

Baiano, Coria & Cau

Late Cretaceous (late Cenomanian-Turonian)

Huincul

 Argentina

A theropod related to Elaphrosaurus. Genus includes new species H. montesi.

Irisosaurus[136]

Gen. et sp. nov

Peyre de Fabrègues et al.

Early Jurassic

Fengjiahe

 China

An early member of Sauropodiformes. The type species is I. yimenensis.

Jinbeisaurus[137]

Gen. et sp. nov

Valid

Wu et al.

Late Cretaceous

Huiquanpu

 China

A tyrannosauroid theropod. Genus includes new species J. wangi. Announced in 2019; the final version of the article naming was published in 2020.

Kholumolumo[138]

Gen. et sp. nov

Valid

Fabrègues & Allain

Late Triassic

Elliot

 Lesotho

An early member of Sauropodomorpha. Genus includes new species K. ellenbergerorum.

Lajasvenator[139]

Gen. et sp. nov

Valid

Coria et al.

Early Cretaceous (Valanginian)

Mulichinco

 Argentina

A carcharodontosaurid theropod. Genus includes new species L. ascheriae. Announced in 2019; the final version of the article naming was published in 2020.

Lusovenator[140] Gen. et sp. nov Valid Malafaia et al. Late Jurassic (Kimmeridgian) Praia da Amoreira-Porto Novo  Portugal A carcharodontosaurian theropod. The type species is L. santosi.

Navajoceratops[141]

Gen. et sp. nov

Valid

Fowler & Freedman Fowler

Late Cretaceous (Campanian)

Kirtland

 United States
( New Mexico)

A chasmosaurine ceratopsid. The type species is N. sullivani.

Omeisaurus puxiani[142]

Sp. nov

Valid

Tan et al.

Middle Jurassic

Shaximiao

 China

A mamenchisaurid sauropod.

Overoraptor[143]

Gen. et sp. nov

Valid

Motta et al.

Late Cretaceous (Cenomanian-Turonian)

Huincul

 Argentina

A paravian theropod, possibly a relative of Rahonavis. Genus includes new species O. chimentoi.

Paraxenisaurus[144]

Gen. et sp. nov

Valid

Serrano-Brañas et al.

Late Cretaceous

Cerro del Pueblo

 Mexico

A deinocheirid ornithomimosaur theropod. Genus includes new species P. normalensis.

Riabininohadros[145]

Gen. et comb. nov

Valid

Lopatin & Averianov

Late Cretaceous (Maastrichtian)

 Ukraine

An ankylopollexian iguanodont. The type species is "Orthomerus" weberi Riabinin (1945).

Schleitheimia[146] Gen. et sp. nov Rauhut, Holwerda & Furrer Late Triassic (Norian) Klettgau   Switzerland An early member of Sauropodiformes. The type species is S. schutzi.
Sinankylosaurus[147] Gen. et sp. nov Wang et al. Late Cretaceous (Campanian) Wangshi  China An ankylosaur. The type species is S. zhuchengensis.

Stellasaurus[148]

Gen. et sp. nov

Valid

Wilson, Ryan & Evans

Late Cretaceous (Campanian)

Two Medicine

 United States
( Montana)

A centrosaurine ceratopsid. The type species is S. ancellae.

Terminocavus[141]

Gen. et sp. nov

Valid

Fowler & Freedman Fowler

Late Cretaceous (Campanian)

Kirtland

 United States
( New Mexico)

A chasmosaurine ceratopsid. The type species is T. sealeyi.

Thanatotheristes[149]

Gen. et sp. nov

Valid

Voris et al.

Late Cretaceous (Campanian)

Foremost

 Canada
( Alberta)

A tyrannosaurid theropod. Genus includes new species T. degrootorum.

Thanos[150] Gen. et sp. nov Valid Delcourt & Iori Late Cretaceous (Santonian) São José do Rio Preto Formation  Brazil An abelisaurid theropod. Genus includes new species T. simonattoi. Announced in 2018; the final version of the article naming it was published in 2020.

Tralkasaurus[151]

Gen. et sp. nov

Valid

Cerroni et al.

Late Cretaceous (Cenomanian-Turonian)

Huincul

 Argentina

An abelisaurid theropod. Genus includes new species T. cuyi. Announced in 2019; the final version of the article naming was published in 2020.

Trierarchuncus[152] Gen. et sp. nov Valid Fowler et al. Late Cretaceous (Maastrichtian) Hell Creek  United States
( Montana)
An alvarezsaurid theropod. The type species is T. prairiensis.

Vallibonavenatrix[153]

Gen. et sp. nov

Valid

Malafaia et al.

Early Cretaceous (Barremian)

Arcillas de Morella

 Spain

A spinosaurid theropod. Genus includes new species V. cani. Announced in 2019; the final version of the article naming it was published in 2020.

Wulong[154]

Gen. et sp. nov

Valid

Poust et al.

Early Cretaceous (Aptian)

Jiufotang

 China

A microraptorine dromaeosaurid theropod. Genus includes new species W. bohaiensis.

Xunmenglong[155]

Gen. et sp. nov

Valid

Xing et al.

Early Cretaceous

Huajiying

 China

A compsognathid theropod. Genus includes new species X. yinliangis. Announced in 2019; the final version of the article naming it was published in 2020.

Yamanasaurus[156]

Gen. et sp. nov

Valid

Apesteguía et al.

Late Cretaceous

Río Playas

 Ecuador

A saltasaurine titanosaur. Genus includes new species Y. lojaensis. Announced in 2019; the final version of the article naming it was published in 2020.

Yunyangosaurus[157]

Gen. et sp. nov

Dai et al.

Middle Jurassic

Xintiangou

 China

A tetanuran theropod, possibly a member of Megalosauroidea. The type species is Y. puanensis.

Birds

Research

  • A study on the phylogenetic relationships and powered flight potential of early birds and their closest relatives is published by Pei et al. (2020), who argue that the potential for powered flight evolved at least 3 times (once in birds and twice in dromaeosaurids).[158]
  • A study on patterns of evolution of avian brain size and its relationship with body size evolution, based on data from extant and fossil birds and from non-avian theropod dinosaurs, is published by Ksepka et al. (2020).[159]
  • A study aiming to determine the volumes of the brain structures used to infer behavior or functional capabilities in Archaeopteryx lithographica, Lithornis plebius, Dinornis robustus, Paraptenodytes antarcticus, Psilopterus lemoinei, Llallawavis scagliai and an unnamed Miocene galliform is published by Early, Ridgely & Witmer (2020).[160]
  • A study on the structure and possible function of the paddle-shaped skeletal elements preserved in the thoracic region of the skeleton of Jeholornis is published by Zheng et al. (2020), who interpret these elements as anomalously expanded sternal ribs.[161]
  • A study on the anatomy of the skull of Sapeornis chaoyangensis is published by Hu et al. (2020).[162]
  • New specimen of Longusunguis kurochkini, providing new information on the anatomy of this taxon and indicating that the plesiomorphic diapsid skull was retained by at least some basal enantiornithines, is described from the Lower Cretaceous Jiufotang Formation (China) by Hu et al. (2020).[163]
  • An isolated foot of an enantiornithine consisting of complete metatarsals and digits, including the claws, is described from the Cretaceous Burmese amber by Xing et al. (2020).[164]
  • New enantiornithine specimen preserving portions of two forelimbs and two feet, as well as associated feathers, is described from the Cretaceous Burmese amber by Xing et al. (2020), providing new evidence of a diversity of limb proportions and plumage patterns in the enantiornithine fauna from Myanmar.[165]
  • Bailleul et al. (2020) confirm the presence of ovarian follicles in an enantiornithine specimen STM10–12 from the Lower Cretaceous of China.[166]
  • New specimen of Protopteryx fengningensis, providing additional information on the plumage of this species, is described by O’Connor et al. (2020).[167]
  • A feather fragment from an aquatic bird is reported from amber recovered from the Pipestone Creek bonebed from the Campanian Wapiti Formation (Alberta, Canada) by Cockx et al. (2020).[168]
  • A tibiotarsus of a non-hesperornithid hesperornithiform is described from the Upper Cretaceous (Maastrichtian) Kita-ama Formation (Japan) by Tanaka et al. (2020), representing the first hesperornithiform record from marine Maastrichtian deposits in Asia reported so far, and indicating that the habitat of hesperornithiforms during the Maastrichtian extended to both terrestrial and marine environments in Asia and North America.[169]
  • A study on the anatomy of the skeleton of Parahesperornis alexi is published by Bell & Chiappe (2020), who report that this taxon possessed a mosaic of basal and derived traits found among other hesperornithiform taxa.[170]
  • A study on melanosome morphologies in two lithornithid specimens from the Eocene Green River Formation (United States), evaluating their implications for reconstructions of coloration in lithornithids and for the knowledge of color evolution in palaeognaths, is published by Eliason & Clarke (2020).[171]
  • A study on the life history of the elephant birds, as indicated by bone histology, is published by Chinsamy et al. (2020).[172]
  • A study on the evolutionary history of the ostriches in Africa and Eurasia during the Miocene, Pliocene and Pleistocene, as indicated by data from eggshell and bone fossil record, is published by Mikhailov & Zelenkov (2020).[173]
  • Volkova & Zelenkov (2020) describe new fossil material of geese from the late Miocene locality Khyargas Nuur 2 in western Mongolia, and evaluate the implications of these fossils for the knowledge of the late Miocene evolution and paleogeography of geese.[174]
  • A coracoid of a small-bodied paraortygid is reported from the Uinta Formation (Utah, United States) by Stidham, Townsend & Holroyd (2020), representing the only known pangalliform from the middle Eocene of North America, occurring in a temporal gap in their history between the early Eocene Gallinuloides wyomingensis and late Eocene Nanortyx inexpectus.[175]
  • Barton et al. (2020) reinterpret purported chicken specimens from the Neolithic site at Dadiwan as remains of pheasants, and argue that these remains provide evidence of exploitation of grain-fed pheasants by early farmers in arid northwest China.[176]
  • Lawal et al. (2020) report that chicken was domesticated 8,000 years ago from its primary ancestor, Red junglefowl and that the genome of chicken was subsequently enhanced through introgression with the other three junglefowls i.e. Grey junglefowl, Sri Lankan junglefowl, and Green junglefowl.[177]
  • A study on the origin and history of domestication of chickens, as indicated by data from domestic chicken and wild jungle fowl genomes, is published by Wang et al. (2020), who interpret their findings as indicating that domestic chickens were initially derived from the red junglefowl subspecies Gallus gallus spadiceus, and that they interbred locally with other subspecies of the red junglefowl and with other jungle fowl species after their domestication.[178]
  • A study comparing the osteology of plotopterids and Paleocene stem group penguins is published by Mayr et al. (2020).[179]
  • A study on the morphological diversity of bills of extant and fossil penguins, and its relationship with feeding habits, is published by Chávez-Hoffmeister (2020).[180]
  • Partial skeleton of an early penguin (possibly belonging to the species Muriwaimanu tuatahi), preserving the first complete wing of a Paleocene penguin reported so far and providing new information on the skeletal anatomy of this taxon, is described from the Waipara Greensand (New Zealand) by Mayr et al. (2020).[181]
  • An articulated wing of Palaeeudyptes gunnari, preserving mineralized skin, is described from the Eocene (Lutetian) of Seymour Island (Antarctica) by Acosta Hospitaleche et al. (2020).[182]
  • New fossil material of Anhinga pannonica is described from the Miocene (Tortonian) of the Hammerschmiede clay pit (Bavaria, Germany) by Mayr, Lechner & Böhme (2020), who also reinterpret the putative Miocene cormorant Phalacrocorax brunhuberi as another, previously misclassified, record of A. pannonica.[183]
  • New fossil material of penguins and a member of Gruiformes is reported from the Eocene La Meseta and Submeseta Formations of the Seymour Island by Davis et al. (2020), supporting previously controversial reports of Gruiformes from Antarctica.[184]
  • Partial tibiotarsus of an owl (possibly a member of Selenornithinae) is described from the Oligocene of the Jebel Qatrani Formation (Egypt) by Smith, Stidham & Mitchell (2020), representing the first occurrence of a fossil owl from the Paleogene of Africa reported so far.[185]
  • A nearly complete passerine specimen is described from the early Oligocene of Revest-des-Brousses (Luberon, Alpes-de-Haute-Provence, France) by Riamon, Tourment & Louchart (2020), who interpret this specimen as a member of Tyranni, most likely belonging to the stem group of Tyrannida.[186]
  • New fossil material of larks is reported from the late Pliocene localities in Transbaikalia (Russia) and Mongolia by Palastrova & Zelenkov (2020), who transfer the species Pliocalcarius orkhonensis to the genus Eremophila, and evaluate the implications of their findings for the knowledge of the evolutionary history of larks.[187]
  • An exceptionally well-preserved bird carcass found in the Siberian permafrost and dated to approximately 44–49 ka BP is described by Dussex et al. (2020), who identify this specimen as a female horned lark, and evaluate the implications of this specimen for the knowledge of the evolution and biogeography of its species during the Pleistocene.[188]
  • Flamingo-like and anatid-like fossil bird footprints will be described from the Vinchina Formation (Argentina) by Farina et al. (2020), who name new ichnotaxa Phoenicopterichnum lucioi and P. vinchinaensis.[189]
  • A study on the impact of the climate changes of the last 35,000 years on small birds from the La Brea Tar Pits is published by Long, Prothero & Syverson (2020).[190]
  • A study comparing predicted breeding and wintering distributions for landbird species identified from the La Brea Tar Pits during the Last Glacial Maximum, aiming to determine if niche models successfully predict species’ presence, to estimate the degree of species turnover, to evaluate the fluidity of life history strategies of birds from La Brea, and to compare niche breadths of bark-foraging birds from La Brea between the Last Glacial Maximum and the present, is published by Zink et al. (2020).[191]
  • New fossil material of seabirds, including remains of the little auk or a related species, is reported from the Pleistocene Kazusa and Shimosa groups (Japan) by Watanabe et al. (2020), who interpret this finding as possible evidence that the little auk more widespread in the North Pacific in the middle Pleistocene than it is today.[192]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images
Aldiomedes[193] Gen. et sp. nov Valid Mayr & Tennyson Late Pliocene Tangahoe  New Zealand An albatross. The type species is A. angustirostris. Announced in 2019; the final version of the article naming it was published in 2020.

Antarcticavis[194]

Gen. et sp. nov

Valid

Cordes-Person et al.

Late Cretaceous (Maastrichtian)

Snow Hill Island

Antarctica

A bird of uncertain phylogenetic placement, possibly a member of Ornithuromorpha belonging to the group Ornithurae. The type species is A. capelambensis. Announced in 2019; the final version of the article naming was published in 2020.

Asio ecuadoriensis[195]

Sp. nov

Valid

Lo Coco, Agnolín & Carrión

Late Pleistocene

 Ecuador

An owl, a species of Asio.

Asteriornis[196]

Gen. et sp. nov

Valid

Field et al.

Late Cretaceous (Maastrichtian)

Maastricht

 Belgium

An early member of Neornithes, occupying a position close to the last common ancestor of Galloanserae. Genus includes new species A. maastrichtensis.

Buteo sanfelipensis[197] Sp. nov Valid Suárez Quaternary Las Breas de San Felipe tar seeps  Cuba A species of Buteo.
Buteogallus royi[197] Sp. nov Valid Suárez Quaternary Las Breas de San Felipe tar seeps  Cuba A species of Buteogallus.
Chauvireria bulgarica[198] Sp. nov Boev Early Pleistocene  Bulgaria A member of the family Phasianidae.
Coragyps seductus[197] Sp. nov Valid Suárez Quaternary Las Breas de San Felipe tar seeps  Cuba A New World vulture.

?Crossvallia waiparensis[199]

Sp. nov

Valid

Mayr et al.

Paleocene

Waipara

 New Zealand

A large-sized penguin. Announced in 2019; the final version of the article naming it was published in 2020.

Eudyptes atatu[200] Sp. nov Valid Thomas, Tennyson, Scofield & Ksepka in Thomas et al. Pliocene (Piacenzian) Tangahoe  New Zealand A crested penguin.
Gigantohierax itchei[197] Sp. nov Valid Suárez Quaternary Las Breas de San Felipe tar seeps  Cuba A member of the family Accipitridae
Icterus turmalis[201] Sp. nov Valid Steadman & Oswald Late Pleistocene Talara tar seeps  Peru A New World oriole.

Jacamatia[202]

Gen. et sp. nov

Valid

Duhamel et al.

Early Oligocene

 France

A member of the stem group of Galbulae. Genus includes new species J. luberonensis.

Khinganornis[203]

Gen. et sp. nov

In press

Wang et al.

Early Cretaceous (Aptian)

Longjiang

 China

A derived member of Ornithuromorpha. Genus includes the new species K. hulunbuirensis.

Kompsornis[204]

Gen. et sp. nov

In press

Wang et al.

Early Cretaceous

Jiufotang

 China

A member of Jeholornithiformes. Genus includes new species K. longicaudus.

Linxiavis[205] Gen. et sp. nov Li et al. Late Miocene Liushu  China A sandgrouse. The type species is L. inaquosus.
Milvago diazfrancoi[197] Sp. nov Valid Suárez Quaternary Las Breas de San Felipe tar seeps  Cuba A species of Milvago.
Mirusavis[206] Gen. et sp. nov Valid Wang et al. Early Cretaceous Yixian  China A member of Enantiornithes. The type species is M. parvus. Announced in 2019; the final version of the article naming it is was published in 2020.
Molothrus resinosus[201] Sp. nov Valid Steadman & Oswald Late Pleistocene Talara tar seeps  Peru A cowbird.
?Palaeoplancus dammanni[207] Sp. nov Valid Mayr & Perner Eocene (Chadronian) White River Group  United States
( Wyoming)
Probably a stem group representative of the family Accipitridae.

Phasianus bulgaricus[208]

Sp. nov

Valid

Boev

Miocene (Turolian)

 Bulgaria

A species of Phasianus.

Primoptynx[209] Gen. et sp. nov Valid Mayr, Gingerich & Smith Eocene (Wasatchian) Willwood  United States
( Wyoming)
A large-sized owl. Genus includes new species P. poliotauros.
Tongoenas[210] Gen. et sp. nov Valid Steadman & Takano Pleistocene and Holocene  Tonga A pigeon. Genus includes new species T. burleyi.
Tyto maniola[211] Sp. nov Valid Suárez & Olson Pleistocene A species of Tyto.

Pterosaurs

Research

  • A study on the ingroup relationships within Pterosauria is published by Baron (2020), who names new clades Zambellisauria and Caviramidae.[212]
  • Mazin & Pouech (2020) describe non-pterodactyloid pterosaur tracks from the ichnological site known as "the Pterosaur Beach of Crayssac" (Tithonian; south-western France), evaluate the implications of these tracks for the knowledge of the terrestrial capabilities of non-pterodactyloid pterosaurs, and name a new ichnogenus Rhamphichnus.[213]
  • A coleoid cephalopod specimen preserved with an associated tooth of a pterosaur (probably Rhamphorhynchus) is reported from the Upper Jurassic Altmühltal Formation (Germany) by Hoffmann et al. (2020), who evaluate the implications of this finding for the knowledge of feeding behaviours of Rhamphorhynchus.[214]
  • A study on changes in the skeletal anatomy during growth in Rhamphorhynchus muensteri is published by Hone et al. (2020), who consider it likely that R. muensteri was able to fly soon after hatching.[215]
  • A well-preserved basihyal is reported for the first time in a pterosaur specimen (possibly belonging to the species Gladocephaloideus jingangshanensis) from the Lower Cretaceous Yixian Formation (China) by Jiang et al. (2020).[216]
  • Jacobs et al. (2020) describe new fossil material of pterosaurs from the Kem Kem Beds (Morocco), bringing the Kem Kem pterosaur fauna up to at least nine species (of which three are ornithocheirids), and confirming that toothed pterosaurs remained diverse during the mid-Cretaceous.[217]
  • Fossil material of pterosaurs (including a large non-pteranodontian ornithocheiroid) is described from the Valanginian Rosablanca Formation by Cadena, Unwin & Martill (2020), representing the first record of pterosaurs from Colombia.[218]
  • Averianov (2020) reassesses the taxonomy of the Lonchodectidae, transferring the species "Lonchodraco" machaerorhynchus (including L. microdon and Pterodactylus oweni) to the genus Ikrandraco. [219]
  • An ornithocheirid metacarpus, representing one of the geologically youngest ornithocheirid remains reported worldwide, is described from the Upper Cretaceous (Cenomanian) of the Crema Bonfil quarry (Coahuila, Mexico) by Frey et al. (2020), who evaluate the implications of this finding for the knowledge of the extinction of the toothed pterosaurs during the Late Cretaceous.[220]
  • New information on the anatomy of Dsungaripterus weii (especially on the palatal region), based on the study of new and previously collected specimens, is published by Chen et al. (2020).[221]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Afrotapejara [222]

Gen. et sp. nov

In press

Martill et al.

Cretaceous

Kem Kem

 Morocco

A tapejarid pterosaur. Genus includes new species A. zouhri.

Albadraco [223]

Gen. et sp. nov

In press

Solomon et al.

Late Cretaceous (Maastrichtian)

Sard

 Romania

An azhdarchid pterosaur. Genus includes new species A. tharmisensis. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Apatorhamphus[224]

Gen. et sp. nov

In press

McPhee et al.

Middle Cretaceous (Albian/Cenomanian)

Kem Kem

 Morocco

A possible chaoyangopterid azhdarchoid pterosaur. Genus includes new species A. gyrostega.[224]

Luchibang[225]

Gen. et sp. nov

Valid

Hone et al.

Early Cretaceous

Yixian

 China

A member of the family Istiodactylidae. The type species is L. xinzhe.

Ordosipterus[226]

Gen. et sp. nov

Valid

Ji

Early Cretaceous

Luohandong

 China

A member of the family Dsungaripteridae. The type species is O. planignathus.

Wightia [227] Gen. et sp. nov In press Martill et al. Early Cretaceous (Barremian) Wessex  United Kingdom A tapejarid pterosaur. Genus includes new species W. declivirostris.

Other archosaurs

Research

  • A study on the anatomy, locomotion and phylogenetic relationships of Scleromochlus taylori is published by Bennett (2020).[228]
  • An Otischalkian assemblage of lagerpetid and silesaurid fossils, including lagerpetid material of unusually large size assignable to Dromomeron, is described from the Los Esteros Member of the Santa Rosa Formation (New Mexico, United States) by Beyl, Nesbitt & Stocker (2020), who interpret this finding as evidence that lagerpetids achieved large body size earlier than previously recognized.[229]
  • A study on the musculoskeletal apparatus and posture of Silesaurus opolensis, evaluating its implications for the knowledge of the evolution of the fully erect limb posture in archosaurs, is published by Piechowski & Tałanda (2020).[230]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images
Kongonaphon[231] Gen. et sp. nov Valid Kammerer et al. Mid-to-Late Triassic Isalo II  Madagascar A member of the family Lagerpetidae. Genus includes new species K. kely.

References

  1. Enrico L. Rezende; Leonardo D. Bacigalupe; Roberto F. Nespolo; Francisco Bozinovic (2020). "Shrinking dinosaurs and the evolution of endothermy in birds". Science Advances. 6 (1): eaaw4486. doi:10.1126/sciadv.aaw4486. PMC 6938711. PMID 31911937.
  2. Robert J. Brocklehurst; Emma R. Schachner; Jonathan R. Codd; William I. Sellers (2020). "Respiratory evolution in archosaurs". Philosophical Transactions of the Royal Society B: Biological Sciences. 375 (1793): Article ID 20190140. doi:10.1098/rstb.2019.0140. PMC 7017431. PMID 31928195.
  3. Michael Naylor Hudgins; Emma R. Schachner; Linda A. Hinnov (2020). "The evolution of respiratory systems in Theropoda and Paracrocodylomorpha, the end-Triassic extinction, and the role of Late Triassic atmospheric O2 and CO2". Palaeogeography, Palaeoclimatology, Palaeoecology. 545: Article 109638. doi:10.1016/j.palaeo.2020.109638.
  4. David Hone; Jordan C. Mallon; Patrick Hennessey; Lawrence M. Witmer (2020). "Ontogeny of a sexually selected structure in an extant archosaur Gavialis gangeticus (Pseudosuchia: Crocodylia) with implications for sexual dimorphism in dinosaurs". PeerJ. 8: e9134. doi:10.7717/peerj.9134. PMC 7227661. PMID 32435543.
  5. Zhiheng Li; Chun-Chieh Wang; Min Wang; Cheng-Cheng Chiang; Yan Wang; Xiaoting Zheng; E-Wen Huang; Kiko Hsiao; Zhonghe Zhou (2020). "Ultramicrostructural reductions in teeth: implications for dietary transition from non-avian dinosaurs to birds". BMC Evolutionary Biology. 20 (1): 46. doi:10.1186/s12862-020-01611-w. PMC 7171806. PMID 32316913.
  6. Aurore Canoville; Mary H. Schweitzer; Lindsay Zanno (2020). "Identifying medullary bone in extinct avemetatarsalians: challenges, implications and perspectives". Philosophical Transactions of the Royal Society B: Biological Sciences. 375 (1793): Article ID 20190133. doi:10.1098/rstb.2019.0133. PMC 7017430. PMID 31928189. S2CID 210157421.
  7. Seung Choi; Sung Keun Lee; Noe-Heon Kim; Seongyeong Kim; Yuong-Nam Lee (2020). "Raman spectroscopy detects amorphous carbon in an enigmatic egg from the Upper Cretaceous Wido Volcanics of South Korea". Frontiers in Earth Science. 7: Article 349. Bibcode:2019FrEaS...7..349C. doi:10.3389/feart.2019.00349.
  8. Savannah Elizabeth Cobb; William I. Sellers (2020). "Inferring lifestyle for Aves and Theropoda: A model based on curvatures of extant avian ungual bones". PLOS ONE. 15 (2): e0211173. doi:10.1371/journal.pone.0211173. PMC 7001973. PMID 32023255.
  9. Lida Xing; Pierre Cockx; Ryan C. McKellar (2020). "Disassociated feathers in Burmese amber shed new light on mid-Cretaceous dinosaurs and avifauna". Gondwana Research. 82: 241–253. doi:10.1016/j.gr.2019.12.017.
  10. M. Belén von Baczko; Julia B. Desojo; Denis Ponce (2020). "Postcranial anatomy and osteoderm histology of Riojasuchus tenuisceps and a phylogenetic update on Ornithosuchidae (Archosauria, Pseudosuchia)". Journal of Vertebrate Paleontology. 39 (5): e1693396. doi:10.1080/02724634.2019.1693396.
  11. Emily Keeble; Michael J. Benton (2020). "Three-dimensional tomographic study of dermal armour from the tail of the Triassic aetosaur Stagonolepis robertsoni" (PDF). Scottish Journal of Geology. 56 (1): 55–62. doi:10.1144/sjg2019-026.
  12. Julia Brenda Desojo; María Belén von Baczko; Oliver W.M. Rauhut (2020). "Anatomy, taxonomy and phylogenetic relationships of Prestosuchus chiniquensis (Archosauria: Pseudosuchia) from the original collection of von Huene, Middle-Late Triassic of southern Brazil". Palaeontologia Electronica. 23 (1): Article number 23(1):a04. doi:10.26879/1026.
  13. Juan Martín Leardi; Diego Pol; James Matthew Clark (2020). "Braincase anatomy of Almadasuchus figarii (Archosauria, Crocodylomorpha) and a review of the cranial pneumaticity in the origins of Crocodylomorpha". Journal of Anatomy. 237 (1): 48–73. doi:10.1111/joa.13171. PMC 7309285. PMID 32227598.
  14. William Gearty; Jonathan L. Payne (2020). "Physiological constraints on body size distributions in Crocodyliformes". Evolution. 74 (2): 245–255. doi:10.1111/evo.13901. PMID 31943148.
  15. Candice M. Stefanic; Jennifer H. Nestler; Erik R. Seiffert; Alan H. Turner (2020). "New crocodylomorph material from the Fayum Depression, Egypt, including the first occurrence of a sebecosuchian in African late Eocene deposits". Journal of Vertebrate Paleontology. 39 (6): e1729781. doi:10.1080/02724634.2019.1729781.
  16. M.L. Fernandez Dumont; P. Bona; D. Pol; S. Apesteguía (2020). "New anatomical information on Araripesuchus buitreraensis with implications for the systematics of Uruguaysuchidae (Crocodyliforms, Notosuchia)". Cretaceous Research. 113: Article 104494. doi:10.1016/j.cretres.2020.104494.
  17. Julia A. Schwab; Mark T. Young; James M. Neenan; Stig A. Walsh; Lawrence M. Witmer; Yanina Herrera; Ronan Allain; Christopher A. Brochu; Jonah N. Choiniere; James M. Clark; Kathleen N. Dollman; Steve Etches; Guido Fritsch; Paul M. Gignac; Alexander Ruebenstahl; Sven Sachs; Alan H. Turner; Patrick Vignaud; Eric W. Wilberg; Xing Xu; Lindsay E. Zanno; Stephen L. Brusatte (2020). "Inner ear sensory system changes as extinct crocodylomorphs transitioned from land to water". Proceedings of the National Academy of Sciences of the United States of America. 117 (19): 10422–10428. doi:10.1073/pnas.2002146117. PMC 7229756. PMID 32312812.
  18. Michela M. Johnson; Mark T. Young; Stephen L. Brusatte (2020). "Emptying the wastebasket: a historical and taxonomic revision of the Jurassic crocodylomorph Steneosaurus". Zoological Journal of the Linnean Society. 189 (2): 428–448. doi:10.1093/zoolinnean/zlaa027.
  19. Stéphane Hua (2020). "A new specimen of Teleidosaurus calvadosii (Eudes-Deslongchamps, 1866) (Crocodylia, Thalattosuchia) from the Middle Jurassic of France". Annales de Paléontologie. in press: Article 102423. doi:10.1016/j.annpal.2020.102423.
  20. Nicolas Séon; Romain Amiot; Jeremy E. Martin; Mark T. Young; Heather Middleton; François Fourel; Laurent Picot; Xavier Valentin; Christophe Lécuyer (2020). "Thermophysiologies of Jurassic marine crocodylomorphs inferred from the oxygen isotope composition of their tooth apatite". Philosophical Transactions of the Royal Society B: Biological Sciences. 375 (1793): Article ID 20190139. doi:10.1098/rstb.2019.0139. PMC 7017436. PMID 31928186. S2CID 210157410.
  21. Pascal Abel; Sven Sachs; Mark Thomas Young (2020). "Metriorhynchid crocodylomorphs from the lower Kimmeridgian of Southern Germany: evidence for a new large-bodied geosaurin lineage in Europe". Alcheringa: An Australasian Journal of Palaeontology. in press: 1–15. doi:10.1080/03115518.2019.1701079.
  22. Sven Sachs; Mark T. Young; Jahn J. Hornung (2020). "The enigma of Enaliosuchus, and a reassessment of the Lower Cretaceous fossil record of Metriorhynchidae". Cretaceous Research. 114: Article 104479. doi:10.1016/j.cretres.2020.104479.
  23. Jorge Cubo; Mariana V. A. Sena; Paul Aubier; Guillaume Houee; Penelope Claisse; Mathieu G. Faure-Brac; Ronan Allain; Rafael C. L. P. Andrade; Juliana M. Sayão; Gustavo R. Oliveira (2020). "Were Notosuchia (Pseudosuchia: Crocodylomorpha) warm-blooded? A palaeohistological analysis suggests ectothermy". Biological Journal of the Linnean Society. in press. doi:10.1093/biolinnean/blaa081.
  24. Felipe C. Montefeltro; Stephan Lautenschlager; Pedro L. Godoy; Gabriel S. Ferreira; Richard J. Butler (2020). "A unique predator in a unique ecosystem: modelling the apex predator within a Late Cretaceous crocodyliform‐dominated fauna from Brazil". Journal of Anatomy. 237 (2): 323–333. doi:10.1111/joa.13192. PMC 7369189. PMID 32255518.
  25. Pedro Henrique Morais Fonseca; Agustín Guillermo Martinelli; Thiago da Silva Marinho; Luiz Carlos Borges Ribeiro; Cesar Leandro Schultz; Marina Bento Soares (2020). "Morphology of the endocranial cavities of Campinasuchus dinizi (Crocodyliformes: Baurusuchidae) from the Upper Cretaceous of Brazil". Geobios. 58: 1–16. doi:10.1016/j.geobios.2019.11.001.
  26. Stéphane Jouve; Nour-Eddine Jalil (2020). "Paleocene resurrection of a crocodylomorph taxon: Biotic crises, climatic and sea level fluctuations". Gondwana Research. 85: 1–18. doi:10.1016/j.gr.2020.03.010.
  27. Felipe C. Montefeltro; Mario Bronzati; Max C. Langer; Luiz E. Anelli (2020). "A new specimen of Susisuchus anatoceps (Crocodyliformes, Neosuchia) with a non-eusuchian-type palate". Journal of Vertebrate Paleontology. 39 (5): e1716240. doi:10.1080/02724634.2019.1716240.
  28. Jeremy E. Martin; Thierry Smith; Céline Salaviale; Jerôme Adrien; Massimo Delfino (2020). "Virtual reconstruction of the skull of Bernissartia fagesii and current understanding of the neosuchian–eusuchian transition". Journal of Systematic Palaeontology. 18 (13): 1079–1101. doi:10.1080/14772019.2020.1731722.
  29. Alejandro Serrano‐Martínez; Fabien Knoll; Iván Narváez; Stephan Lautenschlager; Francisco Ortega (2020). "Neuroanatomical and neurosensorial analysis of the Late Cretaceous basal eusuchian Agaresuchus fontisensis (Cuenca, Spain)". Papers in Palaeontology. in press. doi:10.1002/spp2.1296.
  30. Giovanne M. Cidade; Ascanio D. Rincón; Andrés Solórzano (2020). "New cranial and postcranial elements of Mourasuchus (Alligatoroidea: Caimaninae) from the late Miocene of Venezuela and their palaeobiological implications". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2020.1795844.
  31. Michael D. Stein; Suzanne J. Hand; Michael Archer; Stephen Wroe; Laura A.B. Wilson (2020). "Quantitatively assessing mekosuchine crocodile locomotion by geometric morphometric and finite element analysis of the forelimb". PeerJ. 8: e9349. doi:10.7717/peerj.9349. PMC 7301899. PMID 32587803.
  32. Massimo Delfino; Dawid A. Iurino; Bruno Mercurio; Paolo Piras; Lorenzo Rook; Raffaele Sardella (2020). "Old African fossils provide new evidence for the origin of the American crocodiles". Scientific Reports. 10 (1): Article number 11127. doi:10.1038/s41598-020-68482-5. PMC 7378212. PMID 32703957.
  33. Kyung Soo Kim; Martin G. Lockley; Jong Deock Lim; Seul Mi Bae; Anthony Romilio (2020). "Trackway evidence for large bipedal crocodylomorphs from the Cretaceous of Korea". Scientific Reports. 10 (1): Article number 8680. doi:10.1038/s41598-020-66008-7. PMC 7289791. PMID 32528068.
  34. Christopher A. Brochu; Colin D. Sumrall (2020). "Modern cryptic species and crocodylian diversity in the fossil record". Zoological Journal of the Linnean Society. 189 (2): 700–711. doi:10.1093/zoolinnean/zlaa039.
  35. Adam P. Cossette (2020). "A new species of Bottosaurus (Alligatoroidea: Caimaninae) from the Black Peaks Formation (Palaeocene) of Texas indicates an early radiation of North American caimanines". Zoological Journal of the Linnean Society. Online edition. doi:10.1093/zoolinnean/zlz178.
  36. Adam P. Cossette; Christopher A. Brochu (2020). "A systematic review of the giant alligatoroid Deinosuchus from the Campanian of North America and its implications for the relationships at the root of Crocodylia". Journal of Vertebrate Paleontology. Online edition: e1767638. doi:10.1080/02724634.2020.1767638.
  37. Rodrigo T. Müller; M. Belén Von Baczko; Julia B. Desojo; Sterling J. Nesbitt (2020). "The first ornithosuchid from Brazil and its macroevolutionary and phylogenetic implications for Late Triassic faunas in Gondwana". Acta Palaeontologica Polonica. 65 (1): 1–10. doi:10.4202/app.00652.2019.
  38. Nicholas M. A. Crouch (2020). "Extinction rates of non-avian dinosaur species are uncorrelated with the rate of evolution of phylogenetically informative characters". Biology Letters. 16 (6): Article ID 20200231. doi:10.1098/rsbl.2020.0231. PMC 7336841. PMID 32574533.
  39. Tai Kubo (2020). "Biogeographical network analysis of Cretaceous Australian dinosaurs". Gondwana Research. 82: 39–47. doi:10.1016/j.gr.2019.12.012.
  40. Nicolás E. Campione; Paul M. Barrett; David C. Evans (2020). "On the ancestry of feathers in Mesozoic dinosaurs". In Christian Foth; Oliver W. M. Rauhut (eds.). The evolution of feathers. Fascinating Life Sciences. Springer. pp. 213–243. doi:10.1007/978-3-030-27223-4_12. ISBN 978-3-030-27223-4.
  41. Robin R. Dawson; Daniel J. Field; Pincelli M. Hull; Darla K. Zelenitsky; François Therrien; Hagit P. Affek (2020). "Eggshell geochemistry reveals ancestral metabolic thermoregulation in Dinosauria". Science Advances. 6 (7): eaax9361. doi:10.1126/sciadv.aax9361. PMC 7021498. PMID 32110726.
  42. Mark A. Norell; Jasmina Wiemann; Matteo Fabbri; Congyu Yu; Claudia A. Marsicano; Anita Moore-Nall; David J. Varricchio; Diego Pol; Darla K. Zelenitsky (2020). "The first dinosaur egg was soft". Nature. 583 (7816): 406–410. doi:10.1038/s41586-020-2412-8. PMID 32555457.
  43. Qing He; Sen Yang; Songhai Jia; Li Xu; Lida Xing; Diansong Gao; Di Liu; Yongli Gao; Yalin Zheng (2020). "Trace element and isotope geochemistry of macroelongatoolithid eggs as an indicator of palaeoenvironmental reconstruction from the Late Cretaceous Xixia Basin, China". Cretaceous Research. 109: Article 104373. doi:10.1016/j.cretres.2020.104373.
  44. Seung Choi; Miguel Moreno‐Azanza; Zoltán Csiki‐Sava; Edina Prondvai; Yuong‐Nam Lee (2020). "Comparative crystallography suggests maniraptoran theropod affinities for latest Cretaceous European 'geckoid' eggshell". Papers in Palaeontology. 6 (2): 265–292. doi:10.1002/spp2.1294.
  45. Kohei Tanaka; Darla K. Zelenitsky; François Therrien; Tadahiro Ikeda; Katsuhiro Kubota; Haruo Saegusa; Tomonori Tanaka; Kenji Ikuno (2020). "Exceptionally small theropod eggs from the Lower Cretaceous Ohyamashimo Formation of Tamba, Hyogo Prefecture, Japan". Cretaceous Research. 114: Article 104519. doi:10.1016/j.cretres.2020.104519.
  46. Kimberley E. J. Chapelle; Vincent Fernandez; Jonah N. Choiniere (2020). "Conserved in-ovo cranial ossification sequences of extant saurians allow estimation of embryonic dinosaur developmental stages". Scientific Reports. 10 (1): Article number 4224. doi:10.1038/s41598-020-60292-z. PMC 7145871. PMID 32273522.
  47. Sterling J. Nesbitt; Hans-Dieter Sues (2020). "The osteology of the early-diverging dinosaur Daemonosaurus chauliodus (Archosauria: Dinosauria) from the Coelophysis Quarry (Triassic: Rhaetian) of New Mexico and its relationships to other early dinosaurs". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlaa080.
  48. Henry P. Tsai; Kevin M. Middleton; John R. Hutchinson; Casey M. Holliday (2020). "More than one way to be a giant: Convergence and disparity in the hip joints of saurischian dinosaurs". Evolution. in press. doi:10.1111/evo.14017. PMID 32433795.
  49. David M. Lovelace; Scott A. Hartman; Paul D. Mathewson; Benjamin J. Linzmeier; Warren P. Porter (2020). "Modeling Dragons: Using linked mechanistic physiological and microclimate models to explore environmental, physiological, and morphological constraints on the early evolution of dinosaurs". PLOS ONE. 15 (5): e0223872. doi:10.1371/journal.pone.0223872. PMC 7259893. PMID 32469936.
  50. T. Alexander Dececchi; Aleksandra M. Mloszewska; Thomas R. Holtz Jr.; Michael B. Habib; Hans C. E. Larsson (2020). "The fast and the frugal: Divergent locomotory strategies drive limb lengthening in theropod dinosaurs". PLOS ONE. 15 (5): e0223698. doi:10.1371/journal.pone.0223698. PMC 7220109. PMID 32401793.
  51. Alexander B. Bradley; Sara H. Burch; Alan H. Turner; Nathan D. Smith; Randall B. Irmis; Sterling J. Nesbitt (2020). "Sternal elements of early dinosaurs fill a critical gap in the evolution of the sternum in Avemetatarsalia (Reptilia: Archosauria)". Journal of Vertebrate Paleontology. 39 (5): e1700992. doi:10.1080/02724634.2019.1700992.
  52. Adam D. Marsh; Timothy B. Rowe (2020). "A comprehensive anatomical and phylogenetic evaluation of Dilophosaurus wetherilli (Dinosauria, Theropoda) with descriptions of new specimens from the Kayenta Formation of northern Arizona". Journal of Paleontology. 94 (Supplement S78): 1–103. doi:10.1017/jpa.2020.14.
  53. Martín D. Ezcurra; Richard J. Butler; Susannah C. R. Maidment; Ivan J. Sansom; Luke E. Meade; Jonathan D. Radley (2020). "A revision of the early neotheropod genus Sarcosaurus from the Early Jurassic (Hettangian–Sinemurian) of central England". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlaa054.
  54. Serjoscha W. Evers; Oliver Wings (2020). "Late Jurassic theropod dinosaur bones from the Langenberg Quarry (Lower Saxony, Germany) provide evidence for several theropod lineages in the central European archipelago". PeerJ. 8: e8437. doi:10.7717/peerj.8437. PMC 7007975. PMID 32071804.
  55. Stephanie K. Drumheller; Julia B. McHugh; Miriam Kane; Anja Riedel; Domenic C. D’Amore (2020). "High frequencies of theropod bite marks provide evidence for feeding, scavenging, and possible cannibalism in a stressed Late Jurassic ecosystem". PLOS ONE. 15 (5): e0233115. doi:10.1371/journal.pone.0233115. PMC 7252595. PMID 32459808.
  56. Stephen F. Poropat; Adele H. Pentland; Ruairidh J. Duncan; Joseph J. Bevitt; Patricia Vickers-Rich; Thomas H. Rich (2020). "First elaphrosaurine theropod dinosaur (Ceratosauria: Noasauridae) from Australia — A cervical vertebra from the Early Cretaceous of Victoria". Gondwana Research. 84: 284–295. doi:10.1016/j.gr.2020.03.009.
  57. Tom Brougham; Elizabeth T. Smith; Phil R. Bell (2020). "Noasaurids are a component of the Australian 'mid'-Cretaceous theropod fauna". Scientific Reports. 10 (1): Article number 1428. doi:10.1038/s41598-020-57667-7. PMC 6989633. PMID 31996712.
  58. Mauricio A. Cerroni; Juan I. Canale; Fernando E. Novas; Ariana Paulina‐Carabajal (2020). "An exceptional neurovascular system in abelisaurid theropod skull: New evidence from Skorpiovenator bustingorryi". Journal of Anatomy. in press. doi:10.1111/joa.13258. PMID 32569442.
  59. Samuel B. Gutherz; Joseph R. Groenke; Joseph J.W. Sertich; Sara H. Burch; Patrick M. O’Connor (2020). "Paleopathology in a nearly complete skeleton of Majungasaurus crenatissimus (Theropoda: Abelisauridae)". Cretaceous Research. 115: Article 104553. doi:10.1016/j.cretres.2020.104553.
  60. Jahn Jochen Hornung (2020). "Comments on Ornithocheirus hilsensis Koken, 1883 – one of the earliest dinosaur discoveries in Germany". PalArch's Journal of Vertebrate Palaeontology. 17 (1): 1–12.
  61. Paulo Victor Gomes da Costa Pereira; Theo Baptista Ribeiro; Stephen Louis Brusatte; Carlos Roberto Dos Anjos Candeiro; Thiago da Silva Marinho; Lilian Paglarelli Bergqvist (2020). "Theropod (Dinosauria) diversity from the Açu Formation (mid-Cretaceous), Potiguar Basin, Northeast Brazil". Cretaceous Research. 114: Article 104517. doi:10.1016/j.cretres.2020.104517.
  62. Marco Schade; Oliver W. M. Rauhut; Serjoscha W. Evers (2020). "Neuroanatomy of the spinosaurid Irritator challengeri (Dinosauria: Theropoda) indicates potential adaptations for piscivory". Scientific Reports. 10 (1): Article number 9259. doi:10.1038/s41598-020-66261-w. PMC 7283278. PMID 32518236.
  63. Ibrahim, Nizar; Maganuco, Simone; Dal Sasso, Cristiano; Fabbri, Matteo; Auditore, Marco; Bindellini, Gabriele; Martill, David M.; Zouhri, Samir; Mattarelli, Diego A.; Unwin, David M.; Wiemann, Jasmina (2020). "Tail-propelled aquatic locomotion in a theropod dinosaur". Nature. 581 (7806): 67–70. doi:10.1038/s41586-020-2190-3. ISSN 1476-4687. PMID 32376955.
  64. Robert S.H. Smyth; Nizar Ibrahim; David M. Martill (2020). "Sigilmassasaurus is Spinosaurus: a reappraisal of African spinosaurines". Cretaceous Research. 114: Article 104520. doi:10.1016/j.cretres.2020.104520.
  65. Christophe Hendrickx; Josef Stiegler; Philip J. Currie; Fenglu Han; Xing Xu; Jonah Choiniere; Xiao-Chun Wu (2020). "Dental anatomy of the apex predator Sinraptor dongi (Theropoda: Allosauroidea) from the Late Jurassic of China". Canadian Journal of Earth Sciences. in press. doi:10.1139/cjes-2019-0231.
  66. Rafael Delcourt; Natan S. Brilhante; Orlando N. Grillo; Aline M. Ghilardi; Bruno G. Augusta; Fresia Ricardi-Branco (2020). "Carcharodontosauridae theropod tooth crowns from the Upper Cretaceous (Bauru Basin) of Brazil: A reassessment of isolated elements and its implications to palaeobiogeography of the group". Palaeogeography, Palaeoclimatology, Palaeoecology. 556: Article 109870. doi:10.1016/j.palaeo.2020.109870.
  67. White, Matt A.; Bell, Phil R.; Poropat, Stephen F.; Pentland, Adele H.; Rigby, Samantha L.; Cook, Alex G.; Sloan, Trish; Elliott, David A. (2020). "New theropod remains and implications for megaraptorid diversity in the Winton Formation (lower Upper Cretaceous), Queensland, Australia". Royal Society Open Science. 7 (1): 191462. doi:10.1098/rsos.191462. PMC 7029900. PMID 32218963.
  68. Mauro Aranciaga Rolando; Jordi Garcia Marsà; Fernando Novas (2020). "Histology and pneumaticity of Aoniraptor libertatem (Dinosauria, Theropoda), an enigmatic mid‐sized megaraptoran from Patagonia". Journal of Anatomy. in press. doi:10.1111/joa.13225. PMID 32470191.
  69. Matthew McKeown; Stephen L. Brusatte; Thomas E. Williamson; Julia A. Schwab; Thomas D. Carr; Ian B. Butler; Amy Muir; Katlin Schroeder; Michelle A. Espy; James F. Hunter; Adrian S. Losko; Ronald O. Nelson; D. Cort Gautier; Sven C. Vogel (2020). "Neurosensory and sinus evolution as tyrannosauroid dinosaurs developed giant size: insight from the endocranial anatomy of Bistahieversor sealeyi". The Anatomical Record. 303 (4): 1043–1059. doi:10.1002/ar.24374. PMID 31967416.
  70. Chan-gyu Yun (2020). "An exceptionally small juvenile Gorgosaurus libratus (Dinosauria: Theropoda) specimen from the Dinosaur Park Formation (Campanian) of Alberta". The Mosasaur. The Journal of the Delaware Valley Paleontological Society. XI: 107–115.
  71. Chan-gyu, Yun. (2020). "A reassessment of the taxonomic validity of Dynamoterror dynastes (Theropoda: Tyrannosauridae)". Zoodiversity. 54: 259–264. doi:10.15407/zoo2020.03.259.
  72. Holly N. Woodward; Katie Tremaine; Scott A. Williams; Lindsay E. Zanno; John R. Horner; Nathan Myhrvold (2020). "Growing up Tyrannosaurus rex: Osteohistology refutes the pygmy "Nanotyrannus" and supports ontogenetic niche partitioning in juvenile Tyrannosaurus". Science Advances. 6 (1): eaax6250. doi:10.1126/sciadv.aax6250. PMC 6938697. PMID 31911944.
  73. Thomas D. Carr (2020). "A high-resolution growth series of Tyrannosaurus rex obtained from multiple lines of evidence". PeerJ. 8: e9192. doi:10.7717/peerj.9192.
  74. Christian Foth; Carolin Haug; Joachim T. Haug; Helmut Tischlinger; Oliver W. M. Rauhut (2020). "Two of a feather: a comparison of the preserved integument in the juvenile theropod dinosaurs Sciurumimus and Juravenator from the Kimmeridgian Torleite Formation of southern Germany". In Christian Foth; Oliver W. M. Rauhut (eds.). The evolution of feathers. Fascinating Life Sciences. Springer. pp. 79–101. doi:10.1007/978-3-030-27223-4_6. ISBN 978-3-030-27223-4.
  75. Xingsheng Jin; David J. Varricchio; Ashley W. Poust; Tao He (2020). "An oviraptorosaur adult-egg association from the Cretaceous of Jiangxi Province, China". Journal of Vertebrate Paleontology. 39 (6): e1739060. doi:10.1080/02724634.2019.1739060.
  76. G. F. Funston; P. J. Currie (2020). "New material of Chirostenotes pergracilis (Theropoda, Oviraptorosauria) from the Campanian Dinosaur Park Formation of Alberta, Canada". Historical Biology: An International Journal of Paleobiology. in press: 1–15. doi:10.1080/08912963.2020.1726908.
  77. Matthew M. Rhodes; Gregory F. Funston; Philip J. Currie (2020). "New material reveals the pelvic morphology of Caenagnathidae (Theropoda, Oviraptorosauria)". Cretaceous Research. 114: Article 104521. doi:10.1016/j.cretres.2020.104521.
  78. Thomas M. Cullen; D. Jade Simon; Elizabeth K. C. Benner; David C. Evans (2020). "Morphology and osteohistology of a large‐bodied caenagnathid (Theropoda, Oviraptorosauria) from the Hell Creek Formation (Montana): implications for size‐based classifications and growth reconstruction in theropods". Papers in Palaeontology. in press. doi:10.1002/spp2.1302.
  79. Michael W. Maisch; Andreas T. Matzke (2020). "Small theropod teeth (Dinosauria) from the Upper Jurassic Qigu Formation of the southern Junggar Basin, NW China". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 295 (1): 91–100. doi:10.1127/njgpa/2020/0869.
  80. Chase Doran Brownstein (2020). "Dromaeosaurid crania demonstrate the progressive loss of facial pneumaticity in coelurosaurian dinosaurs". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlaa048.
  81. Federico A. Gianechini; Marcos D. Ercoli; Ignacio Díaz‐Martínez (2020). "Differential locomotor and predatory strategies of Gondwanan and derived Laurasian dromaeosaurids (Dinosauria, Theropoda, Paraves): Inferences from morphometric and comparative anatomical studies". Journal of Anatomy. 236 (5): 772–797. doi:10.1111/joa.13153. PMC 7163733. PMID 32023660.
  82. Mark James Powers; Corwin Sullivan; Philip John Currie (2020). "Re-examining ratio based premaxillary and maxillary characters in Eudromaeosauria (Dinosauria: Theropoda): Divergent trends in snout morphology between Asian and north American taxa". Palaeogeography, Palaeoclimatology, Palaeoecology. 547: Article 109704. doi:10.1016/j.palaeo.2020.109704.
  83. Yosef Kiat; Amir Balaban; Nir Sapir; Jingmai Kathleen O’Connor; Min Wang; Xing Xu (2020). "Sequential molt in a feathered dinosaur and implications for early paravian ecology and locomotion". Current Biology. in press. doi:10.1016/j.cub.2020.06.046. PMID 32679101.
  84. Alfio Alessandro Chiarenza; Anthony R. Fiorillo; Ronald S. Tykoski; Paul J. McCarthy; Peter P. Flaig; Dori L. Contreras (2020). "The first juvenile dromaeosaurid (Dinosauria: Theropoda) from Arctic Alaska". PLOS ONE. 15 (7): e0235078. doi:10.1371/journal.pone.0235078. PMC 7343144. PMID 32639990.
  85. J.A. Frederickson; M.H. Engel; R.L. Cifelli (2020). "Ontogenetic dietary shifts in Deinonychus antirrhopus (Theropoda; Dromaeosauridae): Insights into the ecology and social behavior of raptorial dinosaurs through stable isotope analysis". Palaeogeography, Palaeoclimatology, Palaeoecology. 552: Article 109780. doi:10.1016/j.palaeo.2020.109780.
  86. J. Logan King; Justin S. Sipla; Justin A. Georgi; Amy M. Balanoff; James M. Neenan (2020). "The endocranium and trophic ecology of Velociraptor mongoliensis". Journal of Anatomy. in press. doi:10.1111/joa.13253. PMID 32648601.
  87. Catherine A. Forster; Patrick M. O’Connor; Luis M. Chiappe; Alan H. Turner (2020). "The osteology of the Late Cretaceous paravian Rahonavis ostromi from Madagascar". Palaeontologia Electronica. 23 (2): Article number 23(2):a29. doi:10.26879/793.
  88. Aude Cincotta; Thanh Thuy Nguyen Tu; Julien L. Colaux; Guy Terwagne; Sylvie Derenne; Pascal Godefroit; Robert Carleer; Christelle Anquetil; Johan Yans (2020). "Chemical preservation of tail feathers from Anchiornis huxleyi, a theropod dinosaur from the Tiaojishan Formation (Upper Jurassic, China)". Palaeontology. in press. doi:10.1111/pala.12494.
  89. Daniel D. Cashmore; Philip D. Mannion; Paul Upchurch; Richard J. Butler (2020). "Ten more years of discovery: revisiting the quality of the sauropodomorph dinosaur fossil record". Palaeontology. in press. doi:10.1111/pala.12496.
  90. Rémi Lefebvre; Ronan Allain; Alexandra Houssaye; Raphaël Cornette (2020). "Disentangling biological variability and taphonomy: shape analysis of the limb long bones of the sauropodomorph dinosaur Plateosaurus". PeerJ. 8: e9359. doi:10.7717/peerj.9359. PMC 7382942. PMID 32775045.
  91. Robert R. Reisz; Aaron R. H. LeBlanc; Hillary C. Maddin; Thomas W. Dudgeon; Diane Scott; Timothy Huang; Jun Chen; Chuan-Mu Chen; Shiming Zhong (2020). "Early Jurassic dinosaur fetal dental development and its significance for the evolution of sauropod dentition". Nature Communications. 11 (1): Article number 2240. doi:10.1038/s41467-020-16045-7. PMC 7206009. PMID 32382025.
  92. Benjamin Jentgen-Ceschino; Koen Stein; Valentin Fischer (2020). "Case study of radial fibrolamellar bone tissues in the outer cortex of basal sauropods". Philosophical Transactions of the Royal Society B: Biological Sciences. 375 (1793): Article ID 20190143. doi:10.1098/rstb.2019.0143. PMC 7017438. PMID 31928196. S2CID 210157418.
  93. Daniel Vidal; Pedro Mocho; Adrián Páramo; José Luis Sanz; Francisco Ortega (2020). "Ontogenetic similarities between giraffe and sauropod neck osteological mobility". PLOS ONE. 15 (1): e0227537. doi:10.1371/journal.pone.0227537. PMC 6957182. PMID 31929581.
  94. D. Vidal; P. Mocho; A. Aberasturi; J. L. Sanz; F. Ortega (2020). "High browsing skeletal adaptations in Spinophorosaurus reveal an evolutionary innovation in sauropod dinosaurs". Scientific Reports. 10 (1): Article number 6638. doi:10.1038/s41598-020-63439-0. PMC 7171156. PMID 32313018.
  95. Andrew J. Moore; Paul Upchurch; Paul M. Barrett; James M. Clark; Xu Xing (2020). "Osteology of Klamelisaurus gobiensis (Dinosauria, Eusauropoda) and the evolutionary history of Middle–Late Jurassic Chinese sauropods". Journal of Systematic Palaeontology. 18 (16): 1299–1393. doi:10.1080/14772019.2020.1759706.
  96. Alexander O. Averianov; Nikolay G. Zverkov (2020). "New diplodocoid sauropod dinosaur material from the Middle Jurassic of European Russia". Acta Palaeontologica Polonica. 65. doi:10.4202/app.00724.2020.
  97. Matthew G. Baron (2020). "Tactile tails: a new hypothesis for the function of the elongate tails of diplodocid sauropods". Historical Biology: An International Journal of Paleobiology. in press: 1–10. doi:10.1080/08912963.2020.1769092.
  98. Paulo Victor Luiz Gomes da Costa Pereira; Ingrid Martins Machado Garcia Veiga; Theo Baptista Ribeiro; Ryan Henrique Bezerra Cardozo; Carlos Roberto dos Anjos Candeiro; Lilian Paglarelli Bergqvist (2020). "The path of giants: a new occurrence of Rebbachisauridae (Dinosauria, Diplodocoidea) in the Açu Formation, NE Brazil, and its paleobiogeographic implications". Journal of South American Earth Sciences. 100: Article 102515. doi:10.1016/j.jsames.2020.102515.
  99. Verónica Díez Díaz; Oliver E. Demuth; Daniela Schwarz; Heinrich Mallison (2020). "The tail of the Late Jurassic sauropod Giraffatitan brancai: digital reconstruction of its epaxial and hypaxial musculature, and implications for tail biomechanics". Frontiers in Earth Science. 8: Article 160. doi:10.3389/feart.2020.00160.
  100. Jinyou Mo; Jincheng Li; Yunchuan Ling; Eric Buffetaut; Suravech Suteethorn; Varavudh Suteethorn; Haiyan Tong; Gilles Cuny; Romain Amiot; Xing Xu (2020). "New fossil remain of Fusuisaurus zhaoi (Sauropoda: Titanosauriformes) from the Lower Cretaceous of Guangxi, southern China". Cretaceous Research. 109: Article 104379. doi:10.1016/j.cretres.2020.104379.
  101. Vladimir Nikolov; Marlena Yaneva; Docho Dochev; Ralitsa Konyovska; Ivanina Sergeeva; Latinka Hristova (2020). "Bone histology reveals the first record of titanosaur (Dinosauria: Sauropoda) from the Late Cretaceous of Bulgaria". Palaeontologia Electronica. 23 (1): Article number 23(1):a10. doi:10.26879/879.
  102. Kristyn K. Voegele; Paul V. Ullmann; Matthew C. Lamanna; Kenneth J. Lacovara (2020). "Appendicular myological reconstruction of the forelimb of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani". Journal of Anatomy. 237 (1): 133–154. doi:10.1111/joa.13176. PMC 7309294. PMID 32141103.
  103. Marcos G. Becerra; Diego Pol (2020). "The enamel microstructure of Manidens condorensis: New hypotheses on the ancestral state and evolution of enamel in Ornithischia". Acta Palaeontologica Polonica. 65 (1): 59–70. doi:10.4202/app.00658.2019.
  104. David B. Norman (2020). "Scelidosaurus harrisonii from the Early Jurassic of Dorset, England: the dermal skeleton". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlz085.
  105. Felix J. Augustin; Andreas T. Matzke; Michael W. Maisch; Hans-Ulrich Pfretzschner (2020). "First evidence of an ankylosaur (Dinosauria, Ornithischia) from the Jurassic Qigu Formation (Junggar Basin, NW China) and the early fossil record of Ankylosauria". Geobios. in press. doi:10.1016/j.geobios.2020.06.005.
  106. Caleb M. Brown; David R. Greenwood; Jessica E. Kalyniuk; Dennis R. Braman; Donald M. Henderson; Cathy L. Greenwood; James F. Basinger (2020). "Dietary palaeoecology of an Early Cretaceous armoured dinosaur (Ornithischia; Nodosauridae) based on floral analysis of stomach contents". Royal Society Open Science. 7 (6): Article ID: 200305. doi:10.1098/rsos.200305. PMC 7353971. PMID 32742695.
  107. Ivan Kuzmin; Ivan Petrov; Alexander Averianov; Elizaveta Boitsova; Pavel Skutschas; Hans-Dieter Sues (2020). "The braincase of Bissektipelta archibaldi — new insights into endocranial osteology, vasculature, and paleoneurobiology of ankylosaurian dinosaurs". Biological Communications. 65 (2): 85–156. doi:10.21638/spbu03.2020.201.
  108. P.-E. Dieudonné; P. Cruzado-Caballero; P. Godefroit; T. Tortosa (2020). "A new phylogeny of cerapodan dinosaurs". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2020.1793979.
  109. Fenglu Han; Qi Zhao; Josef Stiegler; Xing Xu (2020). "Bone histology of the non-iguanodontian ornithopod Jeholosaurus shangyuanensis and its implications for dinosaur skeletochronology and development". Journal of Vertebrate Paleontology. in press: e1768538. doi:10.1080/02724634.2020.1768538.
  110. Justyna Słowiak; Tomasz Szczygielski; Michał Ginter; Łucja Fostowicz‐Frelik (2020). "Uninterrupted growth in a non‐polar hadrosaur explains the gigantism among duck‐billed dinosaurs". Palaeontology. 63 (4): 579–599. doi:10.1111/pala.12473.
  111. Chase Doran Brownstein (2020). "Osteology and phylogeny of small-bodied hadrosauromorphs from an end-Cretaceous marine assemblage". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlaa085.
  112. Fabio Marco Dalla Vecchia (2020). "The unusual tail of Tethyshadros insularis (Dinosauria, Hadrosauroidea) from the Adriatic island of the European archipelago". Rivista Italiana di Paleontologia e Stratigrafia. 126 (3): 583–628. doi:10.13130/2039-4942/14075.
  113. Bruce M. Rothschild; Darren Tanke; Frank Rühli; Ariel Pokhojaev; Hila May (2020). "Suggested case of Langerhans Cell Histiocytosis in a Cretaceous dinosaur". Scientific Reports. 10 (1): Article number 2203. doi:10.1038/s41598-020-59192-z. PMC 7010826. PMID 32042034.
  114. Bruce M. Rothschild; Robert A. Depalma; David A. Burnham; Larry Martin (2020). "Anatomy of a dinosaur—Clarification of vertebrae in vertebrate anatomy". Anatomia, Histologia, Embryologia. 49 (4): 571–574. doi:10.1111/ahe.12573. PMID 32468658.
  115. David F. Terrill; Charles M. Henderson; Jason S. Anderson (2020). "New application of strontium isotopes reveals evidence of limited migratory behaviour in Late Cretaceous hadrosaurs". Biology Letters. 16 (3): Article ID 20190930. doi:10.1098/rsbl.2019.0930. PMC 7115185. PMID 32126185.
  116. Ryuji Takasaki; Anthony R. Fiorillo; Ronald S. Tykoski; Yoshitsugu Kobayashi (2020). "Re-examination of the cranial osteology of the Arctic Alaskan hadrosaurine with implications for its taxonomic status". PLOS ONE. 15 (5): e0232410. doi:10.1371/journal.pone.0232410. PMC 7202651. PMID 32374777.
  117. Bethania C.T. Siviero; Elizabeth Rega; William K. Hayes; Allen M. Cooper; Leonard R. Brand; Art V. Chadwick (2020). "Skeletal trauma with implications for intratail mobility in Edmontosaurus annectens from a monodominant bonebed, Lance Formation (Maastrichtian), Wyoming USA". PALAIOS. 35 (4): 201–214. doi:10.2110/palo.2019.079.
  118. Keith Snyder; Matthew McLain; Jared Wood; Arthur Chadwick (2020). "Over 13,000 elements from a single bonebed help elucidate disarticulation and transport of an Edmontosaurus thanatocoenosis". PLOS ONE. 15 (5): e0233182. doi:10.1371/journal.pone.0233182. PMC 7241792. PMID 32437394.
  119. Jialiang Zhang; Xiaolin Wang; Shunxing Jiang; Guobiao Li (2020). "Internal morphology of nasal spine of Tsintaosaurus spinorhinus (Ornithischia: Lambeosaurinae) from the upper cretaceous of Shandong, China". Historical Biology: An International Journal of Paleobiology. in press: 1–8. doi:10.1080/08912963.2020.1731804.
  120. Alida M. Bailleul; Wenxia Zheng; John R. Horner; Brian K. Hall; Casey M. Holliday; Mary H. Schweitzer (2020). "Evidence of proteins, chromosomes and chemical markers of DNA in exceptionally preserved dinosaur cartilage". National Science Review. 7 (4): 815–822. doi:10.1093/nsr/nwz206.
  121. Albert Prieto‐Márquez; Joan Garcia‐Porta; Shantanu H. Joshi; Mark A. Norell; Peter J. Makovicky (2020). "Modularity and heterochrony in the evolution of the ceratopsian dinosaur frill". Ecology and Evolution. 10 (13): 6288–6309. doi:10.1002/ece3.6361. PMC 7381594. PMID 32724514.
  122. Łukasz Czepiński (2020). "New protoceratopsid specimens improve the age correlation of the Upper Cretaceous Gobi Desert strata". Acta Palaeontologica Polonica. 65. doi:10.4202/app.00701.2019.
  123. Seper Ekhtiari; Kentaro Chiba; Snezana Popovic; Rhianne Crowther; Gregory Wohl; Andy Kin On Wong; Darren H. Tanke; Danielle M. Dufault; Olivia D. Geen; Naveen Parasu; Mark A. Crowther; David C. Evans (2020). "First case of osteosarcoma in a dinosaur: a multimodal diagnosis". The Lancet Oncology. 21 (8): 1021–1022. doi:10.1016/S1470-2045(20)30171-6. PMID 32758461.
  124. Caleb M. Brown; Robert B. Holmes; Phillip J. Currie (2020). "A subadult individual of Styracosaurus albertensis (Ornithischia: Ceratopsidae) with comments on ontogeny and intraspecific variation in Styracosaurus and Centrosaurus". Vertebrate Anatomy Morphology Palaeontology. 8: 67–95. doi:10.18435/vamp29361.
  125. Alfio Alessandro Chiarenza; Alexander Farnsworth; Philip D. Mannion; Daniel J. Lunt; Paul J. Valdes; Joanna V. Morgan; Peter A. Allison (2020). "Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction". Proceedings of the National Academy of Sciences of the United States of America. 117 (29): 17084–17093. doi:10.1073/pnas.2006087117.
  126. Alexander O. Averianov; Alexey V. Lopatin (2020). "An unusual new sauropod dinosaur from the Late Cretaceous of Mongolia". Journal of Systematic Palaeontology. 18 (12): 1009–1032. doi:10.1080/14772019.2020.1716402.
  127. Susannah C.R. Maidment; Thomas J. Raven; Driss Ouarhache; Paul M. Barrett (2020). "North Africa's first stegosaur: Implications for Gondwanan thyreophoran dinosaur diversity". Gondwana Research. 77: 82–97. Bibcode:2020GondR..77...82M. doi:10.1016/j.gr.2019.07.007.
  128. Daniel J. Chure; Mark A. Loewen (2020). "Cranial anatomy of Allosaurus jimmadseni, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America". PeerJ. 8: e7803. doi:10.7717/peerj.7803. PMC 6984342. PMID 32002317.
  129. Daniela Schwarz; Philip D. Mannion; Oliver Wings; Christian A. Meyer (2020). "Re-description of the sauropod dinosaur Amanzia ("Ornithopsis/Cetiosauriscus") greppini n. gen. and other vertebrate remains from the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, Switzerland". Swiss Journal of Geosciences. 113 (1): Article number 2. doi:10.1186/s00015-020-00355-5.
  130. Xin-Xin Ren; Toru Sekiya; Tao Wang; Zhi-Wen Yang; Hai-Lu You (2020). "A revision of the referred specimen of Chuanjiesaurus anaensis Fang et al., 2000: a new early branching mamenchisaurid sauropod from the Middle Jurassic of China". Historical Biology: An International Journal of Paleobiology. in press: 1–16. doi:10.1080/08912963.2020.1747450.
  131. Xin-Xin Ren; Jian-Dong Huang; Hai-Lu You (2020). "The second mamenchisaurid dinosaur from the Middle Jurassic of Eastern China". Historical Biology: An International Journal of Paleobiology. 32 (5): 602–610. doi:10.1080/08912963.2018.1515935.
  132. Juliana Manso Sayão; Antônio Álamo Feitosa Saraiva; Arthur Souza Brum; Renan Alfredo Machado Bantim; Rafael Cesar Lima Pedroso de Andrade; Xin Cheng; Flaviana Jorge de Lima; Helder de Paula Silva; Alexander W. A. Kellner (2020). "The first theropod dinosaur (Coelurosauria, Theropoda) from the base of the Romualdo Formation (Albian), Araripe Basin, Northeast Brazil". Scientific Reports. 10 (1): Article number 10892. doi:10.1038/s41598-020-67822-9. PMC 7351750. PMID 32651406.
  133. Funston, Gregory (2020-07-27). "Caenagnathids of the Dinosaur Park Formation (Campanian) of Alberta, Canada: anatomy, osteohistology, taxonomy, and evolution". Vertebrate Anatomy Morphology Palaeontology. 8: 105–153. doi:10.18435/vamp29362. ISSN 2292-1389.
  134. Steven E. Jasinski; Robert M. Sullivan; Peter Dodson (2020). "New dromaeosaurid dinosaur (Theropoda, Dromaeosauridae) from New Mexico and biodiversity of dromaeosaurids at the end of the Cretaceous". Scientific Reports. 10 (1): Article number 5105. doi:10.1038/s41598-020-61480-7. PMC 7099077. PMID 32218481.
  135. Mattia A. Baiano; Rodolfo A. Coria; Andrea Cau (2020). "A new abelisauroid (Dinosauria: Theropoda) from the Huincul formation (lower upper Cretaceous, Neuquén Basin) of Patagonia, Argentina". Cretaceous Research. 110: Article 104408. doi:10.1016/j.cretres.2020.104408.
  136. Claire Peyre de Fabrègues; Shundong Bi; Hongqing Li; Gang Li; Lei Yang; Xing Xu (2020). "A new species of early-diverging Sauropodiformes from the Lower Jurassic Fengjiahe Formation of Yunnan Province, China". Scientific Reports. 10 (1): Article number 10961. doi:10.1038/s41598-020-67754-4. PMC 7335049. PMID 32620800.
  137. Wu Xiao-chun; Shi Jian-Ru; Dong Li-Yang; Thomas D. Carr; Yi Jian; Xu Shi-Chao (2020). "A new tyrannosauroid from the Upper Cretaceous of Shanxi, China". Cretaceous Research. 108: Article 104357. doi:10.1016/j.cretres.2019.104357.
  138. Claire Peyre de Fabrègues; Ronan Allain (2020). "Kholumolumo ellenbergerorum, gen. et sp. nov., a new early sauropodomorph from the lower Elliot Formation (Upper Triassic) of Maphutseng, Lesotho". Journal of Vertebrate Paleontology. 39 (6): e1732996. doi:10.1080/02724634.2019.1732996.
  139. Rodolfo A. Coria; Philip J. Currie; Francisco Ortega; Mattia A. Baiano (2020). "An Early Cretaceous, medium-sized carcharodontosaurid theropod (Dinosauria, Saurischia) from the Mulichinco Formation (upper Valanginian), Neuquén Province, Patagonia, Argentina". Cretaceous Research. 111: Article 104319. doi:10.1016/j.cretres.2019.104319.
  140. Elisabete Malafaia; Pedro Mocho; Fernando Escaso; Francisco Ortega (2020). "A new carcharodontosaurian theropod from the Lusitanian Basin: evidence of allosauroid sympatry in the European Late Jurassic". Journal of Vertebrate Paleontology. Online edition: e1768106. doi:10.1080/02724634.2020.1768106.
  141. Denver W. Fowler; Elizabeth A. Freedman Fowler (2020). "Transitional evolutionary forms in chasmosaurine ceratopsid dinosaurs: evidence from the Campanian of New Mexico". PeerJ. 8: e9251. doi:10.7717/peerj.9251. PMC 7278894. PMID 32547873.
  142. Chao Tan; Ming Xiao; Hui Dai; Xu-Feng Hu; Ning Li; Qing-Yu Ma; Zhao-Ying Wei; Hai-Dong Yu; Can Xiong; Guang-Zhao Peng; Shan Jiang; Xin-Xin Ren; Hai-Lu You (2020). "A new species of Omeisaurus (Dinosauria: Sauropoda) from the Middle Jurassic of Yunyang, Chongqing, China fauna". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2020.1743286.
  143. Matías J. Motta; Federico L. Agnolín; Federico Brissón Egli; Fernando E. Novas (2020). "New theropod dinosaur from the Upper Cretaceous of Patagonia sheds light on the paravian radiation in Gondwana". The Science of Nature. 107 (3): Article number 24. doi:10.1007/s00114-020-01682-1. PMID 32468191.
  144. Claudia Inés Serrano-Brañas; Belinda Espinosa-Chávez; S. Augusta Maccracken; Cirene Gutiérrez-Blando; Claudio de León-Dávila; José Flores Ventura (2020). "Paraxenisaurus normalensis, a large deinocheirid ornithomimosaur from the Cerro del Pueblo Formation (Upper Cretaceous), Coahuila, Mexico". Journal of South American Earth Sciences. 101: Article 102610. doi:10.1016/j.jsames.2020.102610.
  145. Lopatin, A.V.; Averianov, A.O. (2020). "Riabininohadros, a New Genus for the Ornithischian Dinosaur Orthomerus weberae (Ornithopoda, Iguanodontia) from the Late Cretaceous of Crimea". Paleontological Journal. 54 (3): 320–322. doi:10.1134/S0031030120030089.
  146. Oliver W. M. Rauhut; Femke M. Holwerda; Heinz Furrer (2020). "A derived sauropodiform dinosaur and other sauropodomorph material from the Late Triassic of Canton Schaffhausen, Switzerland". Swiss Journal of Geosciences. 113 (1): Article number 8. doi:10.1186/s00015-020-00360-8.
  147. Wang, K. B.; Zhang, Y. X.; Chen, J.; Chen, S. Q.; Wang, P. Y. (2020). "A new ankylosaurian from the Late Cretaceous strata of Zhucheng, Shandong Province". Geological Bulletin of China (in Chinese). 39 (7): 958–962.
  148. John P. Wilson; Michael J. Ryan; David C. Evans (2020). "A new, transitional centrosaurine ceratopsid from the Upper Cretaceous Two Medicine Formation of Montana and the evolution of the 'Styracosaurus-line' dinosaurs". Royal Society Open Science. 7 (4): Article ID: 200284. doi:10.1098/rsos.200284. PMC 7211873. PMID 32431910.
  149. Jared T. Voris; François Therrien; Darla K. Zelenitsky; Caleb M. Brown (2020). "A new tyrannosaurine (Theropoda:Tyrannosauridae) from the Campanian Foremost Formation of Alberta, Canada, provides insight into the evolution and biogeography of tyrannosaurids". Cretaceous Research. 110: Article 104388. doi:10.1016/j.cretres.2020.104388.
  150. Rafael Delcourt; Fabiano Vidoi Iori (2020). "A new Abelisauridae (Dinosauria: Theropoda) from São José do Rio Preto Formation, Upper Cretaceous of Brazil and comments on the Bauru Group fauna". Historical Biology: An International Journal of Paleobiology. 32 (7): 917–924. doi:10.1080/08912963.2018.1546700.
  151. M.A. Cerroni; M.J. Motta; F.L. Agnolín; A.M. Aranciaga Rolando; F. Brissón Egli; F.E. Novas (2020). "A new abelisaurid from the Huincul Formation (Cenomanian-Turonian; Upper Cretaceous) of Río Negro province, Argentina". Journal of South American Earth Sciences. 98: Article 102445. doi:10.1016/j.jsames.2019.102445.
  152. Denver W. Fowler; John P. Wilson; Elizabeth A. Freedman Fowler; Christopher R. Noto; Daniel Anduza; John R. Horner (2020). "Trierarchuncus prairiensis gen. et sp. nov., the last alvarezsaurid: Hell Creek Formation (uppermost Maastrichtian), Montana". Cretaceous Research. in press: Article 104560. doi:10.1016/j.cretres.2020.104560.
  153. Elisabete Malafaia; José Miguel Gasulla; Fernando Escaso; Iván Narváez; José Luis Sanz; Francisco Ortega (2020). "A new spinosaurid theropod (Dinosauria: Megalosauroidea) from the late Barremian of Vallibona, Spain: Implications for spinosaurid diversity in the Early Cretaceous of the Iberian Peninsula". Cretaceous Research. 106: Article 104221. doi:10.1016/j.cretres.2019.104221.
  154. Ashley W. Poust; Chunling Gao; David J. Varricchio; Jianlin Wu; Fengjiao Zhang (2020). "A new microraptorine theropod from the Jehol Biota and growth in early dromaeosaurids". The Anatomical Record. 303 (4): 963–987. doi:10.1002/ar.24343. PMID 31943887.
  155. Lida Xing; Tetsuto Miyashita; Donghao Wang; Kechung Niu; Philip J. Currie (2020). "A new compsognathid theropod dinosaur from the oldest assemblage of the Jehol Biota in the Lower Cretaceous Huajiying Formation, northeastern China". Cretaceous Research. 107: Article 104285. doi:10.1016/j.cretres.2019.104285.
  156. S. Apesteguía; J.E. Soto Luzuriaga; P.A. Gallina; J. Tamay Granda; G.A. Guamán Jaramillo (2020). "The first dinosaur remains from the Cretaceous of Ecuador". Cretaceous Research. 108: Article 104345. doi:10.1016/j.cretres.2019.104345.
  157. Hui Dai; Roger Benson; Xufeng Hu; Qingyu Ma; Chao Tan; Ning Li; Ming Xiao; Haiqian Hu; Yuxuan Zhou; Zhaoying Wei; Feng Zhang; Shan Jiang; Deliang Li; Guangzhao Peng; Yilun Yu; Xing Xu (2020). "A new possible megalosauroid theropod from the Middle Jurassic Xintiangou Formation of Chongqing, People's Republic of China and its implication for early tetanuran evolution". Scientific Reports. 10 (1): Article number 139. doi:10.1038/s41598-019-56959-x. PMC 6954265. PMID 31924836.
  158. Rui Pei; Michael Pittman; Pablo A. Goloboff; T. Alexander Dececchi; Michael B. Habib; Thomas G. Kaye; Hans C.E. Larsson; Mark A. Norell; Stephen L. Brusatte; Xing Xu (2020). "Potential for powered flight neared by most close avialan relatives, but few crossed its thresholds". Current Biology. Online edition. doi:10.1016/j.cub.2020.06.105.
  159. Daniel T. Ksepka; Amy M. Balanoff; N. Adam Smith; Gabriel S. Bever; Bhart-Anjan S. Bhullar; Estelle Bourdon; Edward L. Braun; J. Gordon Burleigh; Julia A. Clarke; Matthew W. Colbert; Jeremy R. Corfield; Federico J. Degrange; Vanesa L. De Pietri; Catherine M. Early; Daniel J. Field; Paul M. Gignac; Maria Eugenia Leone Gold; Rebecca T. Kimball; Soichiro Kawabe; Louis Lefebvre; Jesús Marugán-Lobón; Carrie S. Mongle; Ashley Morhardt; Mark A. Norell; Ryan C. Ridgely; Ryan S. Rothman; R. Paul Scofield; Claudia P. Tambussi; Christopher R. Torres; Marcel van Tuinen; Stig A. Walsh; Akinobu Watanabe; Lawrence M. Witmer; Alexandra K. Wright; Lindsay E. Zanno; Erich D. Jarvis; Jeroen B. Smaers (2020). "Tempo and pattern of avian brain size evolution". Current Biology. 30 (11): 2026–2036.e3. doi:10.1016/j.cub.2020.03.060. PMID 32330422.
  160. Catherine M. Early; Ryan C. Ridgely; Lawrence M. Witmer (2020). "Beyond endocasts: using predicted brain-structure volumes of extinct birds to assess neuroanatomical and behavioral inferences". Diversity. 12 (1): Article 34. doi:10.3390/d12010034.
  161. Xiaoting Zheng; Corwin Sullivan; Jingmai K. O’Connor; Xiaoli Wang; Yan Wang; Xiaomei Zhang; Zhonghe Zhou (2020). "Structure and possible ventilatory function of unusual, expanded sternal ribs in the Early Cretaceous bird Jeholornis". Cretaceous Research. in press: Article 104597. doi:10.1016/j.cretres.2020.104597.
  162. Han Hu; Jingmai K. O’Connor; Paul G. McDonald; Stephen Wroe (2020). "Cranial osteology of the Early Cretaceous Sapeornis chaoyangensis (Aves: Pygostylia)". Cretaceous Research. 113: Article 104496. doi:10.1016/j.cretres.2020.104496.
  163. Han Hu; Jingmai K. O’Connor; Min Wang; Stephen Wroe; Paul G. McDonald (2020). "New anatomical information on the bohaiornithid Longusunguis and the presence of a plesiomorphic diapsid skull in Enantiornithes". Journal of Systematic Palaeontology. 18 (18): 1481–1495. doi:10.1080/14772019.2020.1748133.
  164. Lida Xing; Pierre Cockx; Jingmai K. O'Connor; Ryan C. McKellar (2020). "A newly discovered enantiornithine foot preserved in mid-Cretaceous Burmese amber". Palaeoentomology. 3 (2): 212–219. doi:10.11646/palaeoentomology.3.2.11.
  165. Lida Xing; Jingmai K. O’Connor; Kecheng Niu; Pierre Cockx; Huijuan Mai; Ryan C. McKellar (2020). "A new enantiornithine (Aves) preserved in mid-Cretaceous Burmese amber contributes to growing diversity of Cretaceous plumage patterns". Frontiers in Earth Science. 8: Article 264. doi:10.3389/feart.2020.00264.
  166. Alida M. Bailleul; Jingmai O’Connor; Zhiheng Li; Qian Wu; Tao Zhao; Mario A. Martinez Monleon; Min Wang; Xiaoting Zheng (2020). "Confirmation of ovarian follicles in an enantiornithine (Aves) from the Jehol biota using soft tissue analyses". Communications Biology. 3: Article number 399. doi:10.1038/s42003-020-01131-9. PMID 32724075.
  167. Jingmai K. O’Connor; Xiaoting Zheng; Yanhong Pan; Xiaoli Wang; Yan Wang; Xiaomei Zhang; Zhonghe Zhou (2020). "New information on the plumage of Protopteryx (Aves: Enantiornithes) from a new specimen". Cretaceous Research. in press: Article 104577. doi:10.1016/j.cretres.2020.104577.
  168. Pierre Cockx; Ryan McKellar; Ralf Tappert; Matthew Vavrek; Karlis Muehlenbachs (2020). "Bonebed amber as a new source of paleontological data: The case of the Pipestone Creek deposit (Upper Cretaceous), Alberta, Canada". Gondwana Research. 81: 378–389. Bibcode:2020GondR..81..378C. doi:10.1016/j.gr.2019.12.005.
  169. Tomonori Tanaka; Yoshitsugu Kobayashi; Kenji Ikuno; Tadahiro Ikeda; Haruo Saegusa (2020). "A marine hesperornithiform (Avialae: Ornithuromorpha) from the Maastrichtian of Japan: implications for the paleoecological diversity of the earliest diving birds in the end of the Cretaceous". Cretaceous Research. 113: Article 104492. doi:10.1016/j.cretres.2020.104492.
  170. Alyssa Bell; Luis M. Chiappe (2020). "Anatomy of Parahesperornis: evolutionary mosaicism in the Cretaceous Hesperornithiformes (Aves)". Life. 10 (5): Article 62. doi:10.3390/life10050062. PMC 7281208. PMID 32422986.
  171. Chad M. Eliason; Julia A. Clarke (2020). "Cassowary gloss and a novel form of structural color in birds". Science Advances. 6 (20): eaba0187. doi:10.1126/sciadv.aba0187. PMC 7220335. PMID 32426504.
  172. Anusuya Chinsamy; Delphine Angst; Aurore Canoville; Ursula B. Göhlich (2020). "Bone histology yields insights into the biology of the extinct elephant birds (Aepyornithidae) from Madagascar". Biological Journal of the Linnean Society. 130 (2): 268–295. doi:10.1093/biolinnean/blaa013.
  173. Konstantin E. Mikhailov; Nikita Zelenkov (2020). "The late Cenozoic history of the ostriches (Aves: Struthionidae), as revealed by fossil eggshell and bone remains". Earth-Science Reviews. 208: Article 103270. doi:10.1016/j.earscirev.2020.103270.
  174. N. V. Volkova; N. V. Zelenkov (2020). "On the diversity and morphology of Anserini (Aves: Anatidae) from the late Miocene of western Mongolia". Paleontological Journal. 54 (1): 73–80. doi:10.1134/S0031030120010128.
  175. Thomas A. Stidham; K.E. Beth Townsend; Patricia A. Holroyd (2020). "Evidence for wide dispersal in a stem galliform clade from a new small-sized middle Eocene pangalliform (Aves: Paraortygidae) from the Uinta Basin of Utah (USA)". Diversity. 12 (3): Article 90. doi:10.3390/d12030090.
  176. Loukas Barton; Brittany Bingham; Krithivasan Sankaranarayanan; Cara Monroe; Ariane Thomas; Brian M. Kemp (2020). "The earliest farmers of northwest China exploited grain-fed pheasants not chickens". Scientific Reports. 10 (1): Article number 2556. doi:10.1038/s41598-020-59316-5. PMC 7018827. PMID 32054913.
  177. Lawal, R.A.; et al. (2020). "The wild species genome ancestry of domestic chickens". BMC Biology. 18 (13): 13. doi:10.1186/s12915-020-0738-1. PMC 7014787. PMID 32050971.
  178. Ming-Shan Wang; Mukesh Thakur; Min-Sheng Peng; Yu Jiang; Laurent Alain François Frantz; Ming Li; Jin-Jin Zhang; Sheng Wang; Joris Peters; Newton Otieno Otecko; Chatmongkon Suwannapoom; Xing Guo; Zhu-Qing Zheng; Ali Esmailizadeh; Nalini Yasoda Hirimuthugoda; Hidayat Ashari; Sri Suladari; Moch Syamsul Arifin Zein; Szilvia Kusza; Saeed Sohrabi; Hamed Kharrati-Koopaee; Quan-Kuan Shen; Lin Zeng; Min-Min Yang; Ya-Jiang Wu; Xing-Yan Yang; Xue-Mei Lu; Xin-Zheng Jia; Qing-Hua Nie; Susan Joy Lamont; Emiliano Lasagna; Simone Ceccobelli; Humpita Gamaralalage Thilini Nisanka Gunwardana; Thilina Madusanka Senasige; Shao-Hong Feng; Jing-Fang Si; Hao Zhang; Jie-Qiong Jin; Ming-Li Li; Yan-Hu Liu; Hong-Man Chen; Cheng Ma; Shan-Shan Dai; Abul Kashem Fazlul Haque Bhuiyan; Muhammad Sajjad Khan; Gamamada Liyanage Lalanie Pradeepa Silva; Thi-Thuy Le; Okeyo Ally Mwai; Mohamed Nawaz Mohamed Ibrahim; Megan Supple; Beth Shapiro; Olivier Hanotte; Guojie Zhang; Greger Larson; Jian-Lin Han; Dong-Dong Wu; Ya-Ping Zhang (2020). "863 genomes reveal the origin and domestication of chicken". Cell Research. in press. doi:10.1038/s41422-020-0349-y. PMID 32581344.
  179. Gerald Mayr; James L. Goedert; Vanesa L. de Pietri; R. Paul Scofield (2020). "Comparative osteology of the penguin‐like mid‐Cenozoic Plotopteridae and the earliest true fossil penguins, with comments on the origins of wing‐propelled diving". Journal of Zoological Systematics and Evolutionary Research. in press. doi:10.1111/jzs.12400.
  180. Martín Chávez-Hoffmeister (2020). "Bill disparity and feeding strategies among fossil and modern penguins". Paleobiology. 46 (2): 176–192. doi:10.1017/pab.2020.10.
  181. Gerald Mayr; Vanesa L. de Pietri; Leigh Love; Al A. Mannering; Joseph J. Bevitt; R. Paul Scofield (2020). "First complete wing of a stem group sphenisciform from the Paleocene of New Zealand sheds light on the evolution of the penguin flipper". Diversity. 12 (2): Article 46. doi:10.3390/d12020046.
  182. Carolina Acosta Hospitaleche; Martín De Los Reyes; Sergio Santillana; Marcelo Reguero (2020). "First fossilized skin of a giant penguin from the Eocene of Antarctica". Lethaia. 53 (3): 409–420. doi:10.1111/let.12366.
  183. Gerald Mayr; Thomas Lechner; Madelaine Böhme (2020). "The large-sized darter Anhinga pannonica (Aves, Anhingidae) from the late Miocene hominid Hammerschmiede locality in Southern Germany". PLOS ONE. 15 (5): e0232179. doi:10.1371/journal.pone.0232179. PMC 7202596. PMID 32374733.
  184. Sarah N. Davis; Christopher R. Torres; Grace M. Musser; James V. Proffitt; Nicholas M.A. Crouch; Ernest L. Lundelius; Matthew C. Lamanna; Julia A. Clarke (2020). "New mammalian and avian records from the late Eocene La Meseta and Submeseta formations of Seymour Island, Antarctica". PeerJ. 8: e8268. doi:10.7717/peerj.8268. PMC 6955110. PMID 31942255.
  185. N. Adam Smith; Thomas A. Stidham; Jonathan S. Mitchell (2020). "The first fossil owl (Aves, Strigiformes) from the Paleogene of Africa". Diversity. 12 (4): Article 163. doi:10.3390/d12040163.
  186. Ségolène Riamon; Nicolas Tourment; Antoine Louchart (2020). "The earliest Tyrannida (Aves, Passeriformes), from the Oligocene of France". Scientific Reports. 10 (1): Article number 9776. doi:10.1038/s41598-020-66149-9. PMC 7299954. PMID 32555197.
  187. E. S. Palastrova; N. V. Zelenkov (2020). "A fossil species of Eremophila and other larks (Aves, Alaudidae) from the Upper Pliocene of the Selenga River valley (Central Asia)". Paleontological Journal. 54 (2): 187–204. doi:10.1134/S0031030120020124.
  188. Nicolas Dussex; David W. G. Stanton; Hanna Sigeman; Per G. P. Ericson; Jacquelyn Gill; Daniel C. Fisher; Albert V. Protopopov; Victoria L. Herridge; Valery Plotnikov; Bengt Hansson; Love Dalén (2020). "Biomolecular analyses reveal the age, sex and species identity of a near-intact Pleistocene bird carcass". Communications Biology. 3 (1): Article number 84. doi:10.1038/s42003-020-0806-7. PMC 7035339. PMID 32081985.
  189. Martin Ezequiel Farina; Verónica Krapovickas; Lucas Fernández Piana; Rocío Belen Vera; María De Los Ángeles Ordoñez (2020). "Flamingo-like footprints and the problem of addressing biological diversity in the past". Historical Biology: An International Journal of Paleobiology. in press: 1–15. doi:10.1080/08912963.2019.1669024.
  190. Katherine L. Long; Donald R. Prothero; Valerie J.P. Syverson (2020). "How do small birds evolve in response to climate change? Data from the long‐term record at La Brea tar pits". Integrative Zoology. in press. doi:10.1111/1749-4877.12426. PMID 31912657.
  191. Robert M. Zink; Sebastian Botero-Cañola; Helen Martinez; Katelyn M. Herzberg (2020). "Niche modeling reveals life history shifts in birds at La Brea over the last twenty millennia". PLOS ONE. 15 (1): e0227361. doi:10.1371/journal.pone.0227361. PMC 6964907. PMID 31945101.
  192. Junya Watanabe; Akihiro Koizumi; Ryohei Nakagawa; Keiichi Takahashi; Takeshi Tanaka; Hiroshige Matsuoka (2020). "Seabirds (Aves) from the Pleistocene Kazusa and Shimosa groups, central Japan". Journal of Vertebrate Paleontology. 39 (5): e1697277. doi:10.1080/02724634.2019.1697277.
  193. Gerald Mayr; Alan J. D. Tennyson (2020). "A small, narrow‐beaked albatross from the Pliocene of New Zealand demonstrates a higher past diversity in the feeding ecology of the Diomedeidae". Ibis. 162 (3): 723–734. doi:10.1111/ibi.12757.
  194. Amanda Cordes-Person; Carolina Acosta Hospitaleche; Judd Case; James Martin (2020). "An enigmatic bird from the lower Maastrichtian of Vega Island, Antarctica". Cretaceous Research. 108: Article 104314. doi:10.1016/j.cretres.2019.104314.
  195. Gastón E. Lo Coco; Federico L. Agnolín; José Luis Román Carrión (2020). "Late Pleistocene owls (Aves, Strigiformes) from Ecuador, with the description of a new species". Journal of Ornithology. 161 (3): 713–721. doi:10.1007/s10336-020-01756-x.
  196. Daniel J. Field; Juan Benito; Albert Chen; John W. M. Jagt; Daniel T. Ksepka (2020). "Late Cretaceous neornithine from Europe illuminates the origins of crown birds". Nature. 579 (7799): 397–401. doi:10.1038/s41586-020-2096-0. PMID 32188952.
  197. William Suárez (2020). "The fossil avifauna of the tar seeps Las Breas de San Felipe, Matanzas, Cuba". Zootaxa. 4780 (1): 1–53. doi:10.11646/zootaxa.4780.1.1.
  198. Zlatozar Boev (2020). "Chauvireria bulgarica sp. n. — an extinct Early Pleistocene small phasianid of Phasianinae Horsfield, 1821 from Bulgaria". Historia naturalis bulgarica. 41: 55–70.
  199. Gerald Mayr; Vanesa L. De Pietri; Leigh Love; Al Mannering; R. Paul Scofield (2020). "Leg bones of a new penguin species from the Waipara Greensand add to the diversity of very large-sized Sphenisciformes in the Paleocene of New Zealand". Alcheringa: An Australasian Journal of Palaeontology. 44 (1): 194–201. doi:10.1080/03115518.2019.1641619.
  200. Daniel B. Thomas; Alan J. D. Tennyson; R. Paul Scofield; Tracy A. Heath; Walker Pett; Daniel T. Ksepka (2020). "Ancient crested penguin constrains timing of recruitment into seabird hotspot". Proceedings of the Royal Society B: Biological Sciences. 287 (1932): Article ID 20201497. doi:10.1098/rspb.2020.1497. PMID 32781949.
  201. David W. Steadman; Jessica A. Oswald (2020). "New species of troupial (Icterus) and cowbird (Molothrus) from ice-age Peru". The Wilson Journal of Ornithology. 132 (1): 91–103. doi:10.1676/1559-4491-132.1.91.
  202. Anaïs Duhamel; Christine Balme; Stéphane Legal; Ségolène Riamon; Antoine Louchart (2020). "An early Oligocene stem Galbulae (jacamars and puffbirds) from southern France, and the position of the Paleogene family Sylphornithidae". The Auk. 137 (3): ukaa023. doi:10.1093/auk/ukaa023.
  203. Xuri Wang; Andrea Cau; Martin Kundrát; Luis M. Chiappe; Qiang Ji; Yang Wang; Tao Li; Wenhao Wu (2020). "A new advanced ornithuromorph bird from Inner Mongolia documents the northernmost geographic distribution of the Jehol paleornithofauna in China". Historical Biology: An International Journal of Paleobiology. in press: 1–13. doi:10.1080/08912963.2020.1731805.
  204. Xuri Wang; Jiandong Huang; Martin Kundrát; Andrea Cau; Xiaoyu Liu; Yang Wang; Shubin Ju (2020). "A new jeholornithiform exhibits the earliest appearance of the fused sternum and pelvis in the evolution of avialan dinosaurs". Journal of Asian Earth Sciences. 199: Article 104401. doi:10.1016/j.jseaes.2020.104401.
  205. Zhiheng Li; Thomas A. Stidham; Tao Deng; Zhonghe Zhou (2020). "Evidence of late Miocene peri-Tibetan aridification from the oldest Asian species of sandgrouse (Aves: Pteroclidae)". Frontiers in Ecology and Evolution. 8: Article 59. doi:10.3389/fevo.2020.00059.
  206. Min Wang; Jingmai K. O’Connor; Alida M. Bailleul; Zhiheng Li (2020). "Evolution and distribution of medullary bone: evidence from a new Early Cretaceous enantiornithine bird". National Science Review. 7 (6): 1068–1078. doi:10.1093/nsr/nwz214.
  207. Gerald Mayr; Thomas Perner (2020). "A new species of diurnal birds of prey from the late Eocene of Wyoming (USA) – one of the earliest New World records of the Accipitridae (hawks, eagles, and allies)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 297 (2): 205–215. doi:10.1127/njgpa/2020/0921.
  208. Zlatozar Boev (2020). "First European Neogene record of true pheasants from Gorna Sushitsa (SW Bulgaria)". Historia naturalis bulgarica. 41: 33–39.
  209. Gerald Mayr; Philip D. Gingerich; Thierry Smith (2020). "Skeleton of a new owl from the early Eocene of North America (Aves, Strigiformes) with an accipitrid-like foot morphology". Journal of Vertebrate Paleontology. Online edition: e1769116. doi:10.1080/02724634.2020.1769116.
  210. David W. Steadman; Oona M. Takano (2020). "A new genus and species of pigeon (Aves, Columbidae) from the Kingdom of Tonga, with an evaluation of hindlimb osteology of columbids from Oceania". Zootaxa. 4810 (3): 401–420. doi:10.11646/zootaxa.4810.3.1.
  211. William Suárez; Storrs L. Olson (2020). "Systematics and distribution of the living and fossil small barn owls of the West Indies (Aves: Strigiformes: Tytonidae)". Zootaxa. 4830 (3): 544–564. doi:10.11646/zootaxa.4830.3.4.
  212. Matthew G. Baron (2020). "Testing pterosaur ingroup relationships through broader sampling of avemetatarsalian taxa and characters and a range of phylogenetic analysis techniques". PeerJ. 8: e9604. doi:10.7717/peerj.9604.
  213. Jean-Michel Mazin; Joane Pouech (2020). "The first non-pterodactyloid pterosaurian trackways and the terrestrial ability of non-pterodactyloid pterosaurs". Geobios. 58: 39–53. doi:10.1016/j.geobios.2019.12.002.
  214. R. Hoffmann; J. Bestwick; G. Berndt; R. Berndt; D. Fuchs; C. Klug (2020). "Pterosaurs ate soft-bodied cephalopods (Coleoidea)". Scientific Reports. 10 (1): Article number 1230. doi:10.1038/s41598-020-57731-2. PMC 6985239. PMID 31988362.
  215. David W. E. Hone; John M. Ratcliffe; Daniel K. Riskin; John W. Hermanson; Robert R. Reisz (2020). "Unique near isometric ontogeny in the pterosaur Rhamphorhynchus suggests hatchlings could fly". Lethaia. in press. doi:10.1111/let.12391.
  216. Shunxing Jiang; Zhiheng Li; Xin Cheng; Xiaolin Wang (2020). "The first pterosaur basihyal, shedding light on the evolution and function of pterosaur hyoid apparatuses". PeerJ. 8: e8292. doi:10.7717/peerj.8292. PMC 6951291. PMID 31934505.
  217. Megan L. Jacobs; David M. Martill; David M. Unwin; Nizar Ibrahim; Samir Zouhri; Nicholas R. Longrich (2020). "New toothed pterosaurs (Pterosauria: Ornithocheiridae) from the middle Cretaceous Kem Kem beds of Morocco and implications for pterosaur palaeobiogeography and diversity". Cretaceous Research. 110: Article 104413. doi:10.1016/j.cretres.2020.104413.
  218. Edwin-Alberto Cadena; David M. Unwin; David M. Martill (2020). "Lower Cretaceous pterosaurs from Colombia". Cretaceous Research. 114: Article 104526. doi:10.1016/j.cretres.2020.104526.
  219. Averianov, A.O. (2020). "Taxonomy of the Lonchodectidae (Pterosauria, Pterodactyloidea)". Proceedings of the Zoological Institute RAS. 324 (1): 41–55. doi:10.31610/trudyzin/2020.324.1.41.
  220. Eberhard D. Frey; Wolfgang Stinnesbeck; David M. Martill; Héctor E. Rivera-Sylva; Héctor Porras Múzquiz (2020). "The geologically youngest remains of an ornithocheirid pterosaur from the late Cenomanian (Late Cretaceous) of northeastern Mexico with implications on the paleogeography and extinction of Late Cretaceous ornithocheirids". Palæovertebrata. 43 (1): e4. doi:10.18563/pv.43.1.e4.
  221. He Chen; Shunxing Jiang; Alexander W.A. Kellner; Xin Cheng; Xinjun Zhang; Rui Qiu; Yang Li; Xiaolin Wang (2020). "New anatomical information on Dsungaripterus weii Young, 1964 with focus on the palatal region". PeerJ. 8: e8741. doi:10.7717/peerj.8741. PMC 7127482. PMID 32274262.
  222. David M. Martill; Roy Smith; David M. Unwin; Alexander Kao; James McPhee; Nizar Ibrahim (2020). "A new tapejarid (Pterosauria, Azhdarchoidea) from the mid-Cretaceous Kem Kem beds of Takmout, southern Morocco". Cretaceous Research. 112: Article 104424. doi:10.1016/j.cretres.2020.104424.
  223. Alexandru A. Solomon; Vlad A. Codrea; Márton Venczel; Gerald Grellet-Tinner (2020). "A new species of large-sized pterosaur from the Maastrichtian of Transylvania (Romania)". Cretaceous Research. 110: Article 104316. doi:10.1016/j.cretres.2019.104316.
  224. James McPhee; Nizar Ibrahim; Alex Kao; David M. Unwin; Roy Smith; David M. Martill (2020). "A new ?chaoyangopterid (Pterosauria: Pterodactyloidea) from the Cretaceous Kem Kem beds of Southern Morocco". Cretaceous Research. 110: Article 104410. doi:10.1016/j.cretres.2020.104410.
  225. David W. E. Hone; Adam J. Fitch; Feimin Ma; Xing Xu (2020). "An unusual new genus of istiodactylid pterosaur from China based on a near complete specimen". Palaeontologia Electronica. 23 (1): Article number 23(1):a09. doi:10.26879/1015.
  226. Shu-an Ji (2020). "First record of Early Cretaceous pterosaur from the Ordos Region, Inner Mongolia, China". China Geology. 3 (1): 1–7. doi:10.31035/cg2020007.
  227. David M. Martill; Mick Green; Roy E. Smith; Megan L. Jacobs; John Winch (2020). "First tapejarid pterosaur from the Wessex Formation (Wealden Group: Lower Cretaceous, Barremian) of the United Kingdom". Cretaceous Research. 113: Article 104487. doi:10.1016/j.cretres.2020.104487.
  228. S. Christopher Bennett (2020). "Reassessment of the Triassic archosauriform Scleromochlus taylori: neither runner nor biped, but hopper". PeerJ. 8: e8418. doi:10.7717/peerj.8418. PMC 7035874. PMID 32117608.
  229. Alexander Beyl; Sterling Nesbitt; Michelle R. Stocker (2020). "An Otischalkian dinosauromorph assemblage from the Los Esteros Member (Santa Rosa Formation) of New Mexico and its implications for biochronology and lagerpetid body size". Journal of Vertebrate Paleontology. in press: e1765788. doi:10.1080/02724634.2020.1765788.
  230. Rafał Piechowski; Mateusz Tałanda (2020). "The locomotor musculature and posture of the early dinosauriform Silesaurus opolensis provides a new look into the evolution of Dinosauromorpha". Journal of Anatomy. 236 (6): 1044–1100. doi:10.1111/joa.13155. PMC 7219628. PMID 32003023.
  231. Christian F. Kammerer; Sterling J. Nesbitt; John J. Flynn; Lovasoa Ranivoharimanana; André R. Wyss (2020). "A tiny ornithodiran archosaur from the Triassic of Madagascar and the role of miniaturization in dinosaur and pterosaur ancestry". Proceedings of the National Academy of Sciences of the United States of America. 117 (30): 17932–17936. doi:10.1073/pnas.1916631117. PMID 32631980.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.