Willgerodt rearrangement

The Willgerodt rearrangement or Willgerodt reaction is an organic reaction converting an aryl alkyl ketone to the corresponding amide by reaction with ammonium polysulfide, named after Conrad Willgerodt.[1][2] The formation of the corresponding carboxylic acid is a side reaction. When the alkyl group is an aliphatic chain (n typically 0 to 5), multiple reactions take place with the amide group always ending up at the terminal end.

General scheme for the Willgerodt rearrangement
Willgerodt rearrangement
Named after Conrad Willgerodt
Reaction type Rearrangement reaction
Identifiers
RSC ontology ID RXNO:0000185

An example with modified reagents (sulfur, concentrated ammonium hydroxide and pyridine) is the conversion of acetophenone to 2-phenylacetamide and phenylacetic acid[3]

The Willgerodt rearrangement using acetophenone

Willgerodt–Kindler reaction

Willgerodt–Kindler reaction
Named after Conrad Willgerodt
Karl Kindler
Reaction type Rearrangement reaction
Identifiers
Organic Chemistry Portal willgerodt-kindler-reaction
RSC ontology ID RXNO:0000186

The related Willgerodt–Kindler reaction[4] takes place with elemental sulfur and an amine like morpholine. The initial product is a thioacetamide for example that of acetophenone[5] which can again be hydrolyzed to the amide. The reaction is named after Karl Kindler.

The Kindler modification of the Willgerodt rearrangement

Reaction mechanism

A possible reaction mechanism for the Kindler variation[6] is depicted below:

The likely reaction mechanism for the Kindler modification.

The first stage of the reaction is basic imine formation by the ketone group and the amine group of morpholine to the enamine which reacts in a conjugate addition (see Stork enamine alkylation for a related step) with sulfur to the sulfide. The actual rearrangement reaction takes place when the amine group attacks the thiocarbonyl in a nucleophilic addition temporarily forming an aziridine and the thioacetamide by tautomerization.

gollark: So obviously some integration is poisslble.
gollark: Of course. You see, it turns out that beehives and server racks are compatible.
gollark: However, you are able to store bees in existing pages.
gollark: I reworked the UI a while ago and it maaaay be slightly impossible to create new pages.
gollark: Okay, it turns out you cannot store bees due to a glitch, oopsie.

References

  1. Willgerodt, Ber., 20, 2467 (1887) doi:10.1002/cber.18870200278; 21, 534 (1888) doi:10.1002/cber.18880210195
  2. Carmack, M.; Spielman, M. A. Org. React. 1946, 3.
  3. The Willgerodt Reaction. II. A Study of Reaction Conditions with Acetophenone and Other KetonesDeLos F. DeTar and Marvin Carmack J. Am. Chem. Soc. 1946, 68(10), 2025 - 2029. (doi:10.1021/ja01214a047)
  4. Karl Kindler (1923). "Studien über den Mechanismus chemischer Reaktionen. Erste Abhandlung. Reduktion von Amiden und Oxydation von Aminen". Liebigs Annalen. 431 (1): 187–230. doi:10.1002/jlac.19234310111.
  5. Organic Syntheses, Coll. Vol. 9, p.99 (1998); Vol. 74, p.257 (1997). (Article)
  6. Name Reactions and Reagents in Organic Synthesis Bradford P. Mundy, Michael G. Ellerd, Frank G. Jr. Favaloro 2005 ISBN 0-471-22854-0
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.