Van der Waerden notation

In theoretical physics, van der Waerden notation[1][2] refers to the usage of two-component spinors (Weyl spinors) in four spacetime dimensions. This is standard in twistor theory and supersymmetry. It is named after Bartel Leendert van der Waerden.

Dotted indices

Undotted indices (chiral indices)

Spinors with lower undotted indices have a left-handed chirality, and are called chiral indices.

Dotted indices (anti-chiral indices)

Spinors with raised dotted indices, plus an overbar on the symbol (not index), are right-handed, and called anti-chiral indices.

Without the indices, i.e. "index free notation", an overbar is retained on right-handed spinor, since ambiguity arises between chiralty when no index is indicated.

Hatted indices

Indices which have hats are called Dirac indices, and are the set of dotted and undotted, or chiral and anti-chiral, indices. For example, if

then a spinor in the chiral basis is represented as

where

In this notation the Dirac adjoint (also called the Dirac conjugate) is

gollark: I doubt it would be very intensive. Just mildly inelegant and inefficient.
gollark: I'm sure there's *some* way to background it or whatever, or offload it to another process.
gollark: Or, I guess, more generically, "a thing to run a shell command based on some ingame action", which I bet already exists.
gollark: That sounds like a highly inefficient way to say "a thing to take ZFS snapshots on command".
gollark: I am very happy that none of my stuff ever has to deal with more than something like a few requests a second of traffic.

See also

Notes

  1. Van der Waerden B.L. (1929). "Spinoranalyse". Nachr. Ges. Wiss. Göttingen Math.-Phys. ohne Angabe: 100–109.
  2. Veblen O. (1933). "Geometry of two-component Spinors". Proc. Natl. Acad. Sci. USA. 19 (4): 462–474. Bibcode:1933PNAS...19..462V. doi:10.1073/pnas.19.4.462. PMC 1086023. PMID 16577541.

References

  • Spinors in physics
  • P. Labelle (2010), Supersymmetry, Demystified series, McGraw-Hill (USA), ISBN 978-0-07-163641-4
  • Hurley, D.J.; Vandyck, M.A. (2000), Geometry, Spinors and Applications, Springer, ISBN 1-85233-223-9
  • Penrose, R.; Rindler, W. (1984), Spinors and Space–Time, Vol. 1, Cambridge University Press, ISBN 0-521-24527-3
  • Budinich, P.; Trautman, A. (1988), The Spinorial Chessboard, Springer-Verlag, ISBN 0-387-19078-3
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.