VGF

VGF or VGF nerve growth factor inducible is a secreted protein and neuropeptide precursor that may play a role in regulating energy homeostasis, metabolism[5] and synaptic plasticity.[6] The protein was first discovered in 1985 by Levi et al.[7] in an experiment with PC12 cells and its name is non-acronymic. VGF gene encodes a precursor which is divided by proteolysis to polypeptides of different mass, which have a variety of functions, the best studied of which are the roles of TLQP-21 in the control of appetite and inflammation.,[8][9][10][11][12][13][14][15] and TLQP-62 as well as AQEE-30 in regulating depression-like behaviors[16][17][18][19][20] and memory [21][22] The expression of VGF and VGF-derived peptides is detected in a subset of neurons in the central and peripheral nervous systems and specific populations of endocrine cells in the adenohypophysis, adrenal medulla, gastrointestinal tract, and pancreas.[23] VGF expression is induced by NGF, CREB and BDNF and regulated by neurotrophin-3.[24] Physical exercise significantly increases VGF expression in mice hippocampal tissue and upregulates a neurotrophic signaling cascade thought to underlie the action of antidepressants.[16][25][26][27]

VGF
Identifiers
AliasesVGF, SCG7, SgVII, VGF nerve growth factor inducible
External IDsOMIM: 602186 MGI: 1343180 HomoloGene: 2536 GeneCards: VGF
Gene location (Human)
Chr.Chromosome 7 (human)[1]
Band7q22.1Start101,162,509 bp[1]
End101,165,569 bp[1]
Orthologs
SpeciesHumanMouse
Entrez

7425

381677

Ensembl

ENSG00000128564

ENSMUSG00000037428

UniProt

O15240

Q0VGU4

RefSeq (mRNA)

NM_003378

NM_001039385

RefSeq (protein)

NP_003369

NP_001034474

Location (UCSC)Chr 7: 101.16 – 101.17 MbChr 5: 137.03 – 137.03 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Role in pathology

Changes in expression of discrete VGF fragments have been detected in different neurological and psychiatric conditions. In schizophrenia, one study has shown an increase in the VGF23-62 peptide[28] and a subsequent small study demonstrated that drugs further increase the expression, pointing at a possible ameliorating action of the fragment. A decreased expression of VGF26-62 peptide was found in frontotemporal dementia[29] and the expression of a fragment containing aminoacids 378-398 was found to be changing in amyotrophic lateral sclerosis[30] and Alzheimer's disease.[31] VGF expression has also been shown in damaged peripheral nerves, and it is thought to have a role in neuropathic pain.[32] In Glioblastoma, VGF has been shown to play autocrine and paracrine roles in feedback loops between differentiated glioblastoma cells and glioblastoma-specific cancer stem cells, promoting growth, survival and self-renewal.[33]

gollark: What would be neat is a modernized and usable but *non-systemd* service manager.
gollark: The trouble is that systemd is a giant monolith which random things now tie deeply into.
gollark: The basics of service manager-ing aren't massively complex, so I suppose it'd be doable to implement your own.
gollark: It's a shame there wasn't some sort of middle ground where we got a reasonable service manager which didn't take over the entire system.
gollark: systemd does have problems, but at least unit files aren't init scripts...

References

  1. GRCh38: Ensembl release 89: ENSG00000128564 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000037428 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Hahm S, Mizuno TM, Wu TJ, Wisor JP, Priest CA, Kozak CA, Boozer CN, Peng B, McEvoy RC, Good P, Kelley KA, Takahashi JS, Pintar JE, Roberts JL, Mobbs CV, Salton SR (July 1999). "Targeted deletion of the Vgf gene indicates that the encoded secretory peptide precursor plays a novel role in the regulation of energy balance". Neuron. 23 (3): 537–48. doi:10.1016/S0896-6273(00)80806-5. PMID 10433265.
  6. Alder J, Thakker-Varia S, Bangasser DA, Kuroiwa M, Plummer MR, Shors TJ, Black IB (November 2003). "Brain-derived neurotrophic factor-induced gene expression reveals novel actions of VGF in hippocampal synaptic plasticity". The Journal of Neuroscience. 23 (34): 10800–8. doi:10.1523/JNEUROSCI.23-34-10800.2003. PMC 3374594. PMID 14645472.
  7. Levi A, Eldridge JD, Paterson BM (July 1985). "Molecular cloning of a gene sequence regulated by nerve growth factor". Science. 229 (4711): 393–5. doi:10.1126/science.3839317. PMID 3839317.
  8. Bartolomucci A, La Corte G, Possenti R, Locatelli V, Rigamonti AE, Torsello A, Bresciani E, Bulgarelli I, Rizzi R, Pavone F, D'Amato FR, Severini C, Mignogna G, Giorgi A, Schininà ME, Elia G, Brancia C, Ferri GL, Conti R, Ciani B, Pascucci T, Dell'Omo G, Muller EE, Levi A, Moles A (September 2006). "TLQP-21, a VGF-derived peptide, increases energy expenditure and prevents the early phase of diet-induced obesity". Proceedings of the National Academy of Sciences of the United States of America. 103 (39): 14584–9. doi:10.1073/pnas.0606102103. PMC 1600003. PMID 16983076.
  9. Rizzi R, Bartolomucci A, Moles A, D'Amato F, Sacerdote P, Levi A, La Corte G, Ciotti MT, Possenti R, Pavone F (August 2008). "The VGF-derived peptide TLQP-21: a new modulatory peptide for inflammatory pain". Neuroscience Letters. 441 (1): 129–33. doi:10.1016/j.neulet.2008.06.018. PMID 18586396.
  10. Bartolomucci A, Moles A, Levi A, Possenti R (September 2008). "Pathophysiological role of TLQP-21: gastrointestinal and metabolic functions". Eating and Weight Disorders. 13 (3): e49-54. PMID 19011364.
  11. Zhao Z, Lange DJ, Ho L, Bonini S, Shao B, Salton SR, Thomas S, Pasinetti GM (April 2008). "Vgf is a novel biomarker associated with muscle weakness in amyotrophic lateral sclerosis (ALS), with a potential role in disease pathogenesis". International Journal of Medical Sciences. 5 (2): 92–9. doi:10.7150/ijms.5.92. PMC 2323610. PMID 18432310.
  12. Bartolomucci A, Possenti R, Levi A, Pavone F, Moles A (November 2007). "The role of the vgf gene and VGF-derived peptides in nutrition and metabolism". Genes & Nutrition. 2 (2): 169–80. doi:10.1007/s12263-007-0047-0. PMC 2474945. PMID 18850173.
  13. D'Amato F, Noli B, Brancia C, Cocco C, Flore G, Collu M, Nicolussi P, Ferri GL (May 2008). "Differential distribution of VGF-derived peptides in the adrenal medulla and evidence for their selective modulation". The Journal of Endocrinology. 197 (2): 359–69. doi:10.1677/JOE-07-0346. PMID 18434366.
  14. Jethwa PH, Ebling FJ (2008). "Role of VGF-derived peptides in the control of food intake, body weight and reproduction". Neuroendocrinology. 88 (2): 80–7. doi:10.1159/000127319. PMID 18408361.
  15. Bartolomucci A, Bresciani E, Bulgarelli I, Rigamonti AE, Pascucci T, Levi A, Possenti R, Torsello A, Locatelli V, Muller EE, Moles A (March 2009). "Chronic intracerebroventricular injection of TLQP-21 prevents high fat diet induced weight gain in fast weight-gaining mice". Genes & Nutrition. 4 (1): 49–57. doi:10.1007/s12263-009-0110-0. PMC 2654049. PMID 19247701.
  16. Hunsberger JG, Newton SS, Bennett AH, Duman CH, Russell DS, Salton SR, Duman RS (December 2007). "Antidepressant actions of the exercise-regulated gene VGF". Nature Medicine. 13 (12): 1476–82. doi:10.1038/nm1669. PMID 18059283.
  17. Thakker-Varia S, Krol JJ, Nettleton J, Bilimoria PM, Bangasser DA, Shors TJ, Black IB, Alder J (November 2007). "The neuropeptide VGF produces antidepressant-like behavioral effects and enhances proliferation in the hippocampus". The Journal of Neuroscience. 27 (45): 12156–67. doi:10.1523/jneurosci.1898-07.2007. PMC 3363962. PMID 17989282.
  18. Thakker-Varia S, Alder J (February 2009). "Neuropeptides in depression: role of VGF". Behavioural Brain Research. 197 (2): 262–78. doi:10.1016/j.bbr.2008.10.006. PMC 2648305. PMID 18983874.
  19. Jiang C, Lin WJ, Sadahiro M, Labonté B, Menard C, Pfau ML, Tamminga CA, Turecki G, Nestler EJ, Russo SJ, Salton SR (November 2017). "VGF function in depression and antidepressant efficacy". Molecular Psychiatry. 23 (7): 1632–1642. doi:10.1038/mp.2017.233. PMC 5962361. PMID 29158577.
  20. Jiang, Cheng; Lin, Wei-Jye; Labonté, Benoit; Tamminga, Carol A.; Turecki, Gustavo; Nestler, Eric J.; Russo, Scott J.; Salton, Stephen R. (2018-11-20). "VGF and its C-terminal peptide TLQP-62 in ventromedial prefrontal cortex regulate depression-related behaviors and the response to ketamine". Neuropsychopharmacology. 44 (5): 971–981. doi:10.1038/s41386-018-0277-4. ISSN 1740-634X. PMID 30504797.
  21. Bozdagi O, Rich E, Tronel S, Sadahiro M, Patterson K, Shapiro ML, Alberini CM, Huntley GW, Salton SR (September 2008). "The neurotrophin-inducible gene Vgf regulates hippocampal function and behavior through a brain-derived neurotrophic factor-dependent mechanism". The Journal of Neuroscience. 28 (39): 9857–69. doi:10.1523/jneurosci.3145-08.2008. PMC 2820295. PMID 18815270.
  22. Lin WJ, Jiang C, Sadahiro M, Bozdagi O, Vulchanova L, Alberini CM, Salton SR (July 2015). "VGF and Its C-Terminal Peptide TLQP-62 Regulate Memory Formation in Hippocampus via a BDNF-TrkB-Dependent Mechanism". The Journal of Neuroscience. 35 (28): 10343–56. doi:10.1523/jneurosci.0584-15.2015. PMC 4502270. PMID 26180209.
  23. Levi A, Ferri GL, Watson E, Possenti R, Salton SR (August 2004). "Processing, distribution, and function of VGF, a neuronal and endocrine peptide precursor". Cellular and Molecular Neurobiology. 24 (4): 517–33. doi:10.1023/B:CEMN.0000023627.79947.22. PMID 15233376.
  24. Mandolesi G, Gargano S, Pennuto M, Illi B, Molfetta R, Soucek L, Mosca L, Levi A, Jucker R, Nasi S (January 2002). "NGF-dependent and tissue-specific transcription of vgf is regulated by a CREB-p300 and bHLH factor interaction". FEBS Letters. 510 (1–2): 50–6. doi:10.1016/S0014-5793(01)03227-6. PMID 11755530.
  25. Thakker-Varia S, Krol JJ, Nettleton J, Bilimoria PM, Bangasser DA, Shors TJ, Black IB, Alder J (November 2007). "The neuropeptide VGF produces antidepressant-like behavioral effects and enhances proliferation in the hippocampus". The Journal of Neuroscience. 27 (45): 12156–67. doi:10.1523/JNEUROSCI.1898-07.2007. PMC 3363962. PMID 17989282.
  26. Malberg JE, Monteggia LM (May 2008). "VGF, a new player in antidepressant action?". Science Signaling. 1 (18): pe19. doi:10.1126/stke.118pe19. PMC 2745068. PMID 18460680.
  27. Thakker-Varia S, Alder J (February 2009). "Neuropeptides in depression: role of VGF". Behavioural Brain Research. 197 (2): 262–78. doi:10.1016/j.bbr.2008.10.006. PMC 2648305. PMID 18983874.
  28. Huang JT, Leweke FM, Oxley D, Wang L, Harris N, Koethe D, Gerth CW, Nolden BM, Gross S, Schreiber D, Reed B, Bahn S (November 2006). "Disease biomarkers in cerebrospinal fluid of patients with first-onset psychosis". PLoS Medicine. 3 (11): e428. doi:10.1371/journal.pmed.0030428. PMC 1630717. PMID 17090210.
  29. Rüetschi U, Zetterberg H, Podust VN, Gottfries J, Li S, Hviid Simonsen A, McGuire J, Karlsson M, Rymo L, Davies H, Minthon L, Blennow K (December 2005). "Identification of CSF biomarkers for frontotemporal dementia using SELDI-TOF". Experimental Neurology. 196 (2): 273–81. doi:10.1016/j.expneurol.2005.08.002. PMID 16154129.
  30. Ranganathan S, Williams E, Ganchev P, Gopalakrishnan V, Lacomis D, Urbinelli L, Newhall K, Cudkowicz ME, Brown RH, Bowser R (December 2005). "Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis". Journal of Neurochemistry. 95 (5): 1461–71. doi:10.1111/j.1471-4159.2005.03478.x. PMC 1540444. PMID 16313519.free full text
  31. Carrette O, Demalte I, Scherl A, Yalkinoglu O, Corthals G, Burkhard P, Hochstrasser DF, Sanchez JC (August 2003). "A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer's disease". Proteomics. 3 (8): 1486–94. doi:10.1002/pmic.200300470. PMID 12923774.
  32. Moss A, Ingram R, Koch S, Theodorou A, Low L, Baccei M, Hathway GJ, Costigan M, Salton SR, Fitzgerald M (December 2008). "Origins, actions and dynamic expression patterns of the neuropeptide VGF in rat peripheral and central sensory neurones following peripheral nerve injury". Molecular Pain. 4: 1744-8069–4-62. doi:10.1186/1744-8069-4-62. PMC 2614976. PMID 19077191.
  33. Wang X, Prager BC, Wu Q, Kim LJY, Gimple RC, Shi Y, et al. (April 2018). "Reciprocal Signaling between Glioblastoma Stem Cells and Differentiated Tumor Cells Promotes Malignant Progression". Cell Stem Cell. 22 (4): 514–528.e5. doi:10.1016/j.stem.2018.03.011. PMC 5947947. PMID 29625067.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.