Tetragonal disphenoid honeycomb

The tetragonal disphenoid tetrahedral honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of identical tetragonal disphenoidal cells. Cells are face-transitive with 4 identical isosceles triangle faces. John Horton Conway calls it an oblate tetrahedrille or shortened to obtetrahedrille.[1]

Tetragonal disphenoid tetrahedral honeycomb
Typeconvex uniform honeycomb dual
Coxeter-Dynkin diagram
Cell type
Tetragonal disphenoid
Face typesisosceles triangle {3}
Vertex figure
tetrakis hexahedron
Space groupIm3m (229)
Symmetry[[4,3,4]]
Coxeter group, [4,3,4]
DualBitruncated cubic honeycomb
Propertiescell-transitive, face-transitive, vertex-transitive

A cell can be seen as 1/12 of a translational cube, with its vertices centered on two faces and two edges. Four of its edges belong to 6 cells, and two edges belong to 4 cells.

The tetrahedral disphenoid honeycomb is the dual of the uniform bitruncated cubic honeycomb.

Its vertices form the A*
3
/ D*
3
lattice, which is also known as the Body-Centered Cubic lattice.

Geometry

This honeycomb's vertex figure is a tetrakis cube: 24 disphenoids meet at each vertex. The union of these 24 disphenoids forms a rhombic dodecahedron. Each edge of the tessellation is surrounded by either four or six disphenoids, according to whether it forms the base or one of the sides of its adjacent isosceles triangle faces respectively. When an edge forms the base of its adjacent isosceles triangles, and is surrounded by four disphenoids, they form an irregular octahedron. When an edge forms one of the two equal sides of its adjacent isosceles triangle faces, the six disphenoids surrounding the edge form a special type of parallelepiped called a trigonal trapezohedron.

An orientation of the tetragonal disphenoid honeycomb can be obtained by starting with a cubic honeycomb, subdividing it at the planes , , and (i.e. subdividing each cube into path-tetrahedra), then squashing it along the main diagonal until the distance between the points (0, 0, 0) and (1, 1, 1) becomes the same as the distance between the points (0, 0, 0) and (0, 0, 1).

Hexakis cubic honeycomb

Hexakis cubic honeycomb
Pyramidille[2]
TypeDual uniform honeycomb
Coxeter–Dynkin diagrams
Cell Isosceles square pyramid
Faces Triangle
square
Space group
Fibrifold notation
Pm3m (221)
4:2
Coxeter group, [4,3,4]
vertex figures
,
DualTruncated cubic honeycomb
PropertiesCell-transitive

The hexakis cubic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. John Horton Conway calls it a pyramidille.[3]

Cells can be seen in a translational cube, using 4 vertices on one face, and the cube center. Edges are colored by how many cells are around each of them.

It can be seen as a cubic honeycomb with each cube subdivided by a center point into 6 square pyramid cells.

There are two types of planes of faces: one as a square tiling, and flattened triangular tiling with half of the triangles removed as holes.

Tiling
plane
Symmetry p4m, [4,4] (*442) pmm, [∞,2,∞] (*2222)

It is dual to the truncated cubic honeycomb with octahedral and truncated cubic cells:

If the square pyramids of the pyramidille are joined on their bases, another honeycomb is created with identical vertices and edges, called a square bipyramidal honeycomb, or the dual of the rectified cubic honeycomb.

It is analogous to the 2-dimensional tetrakis square tiling:

Square bipyramidal honeycomb

Square bipyramidal honeycomb
Oblate octahedrille[4]
TypeDual uniform honeycomb
Coxeter–Dynkin diagrams
Cell Square bipyramid
Faces Triangles
Space group
Fibrifold notation
Pm3m (221)
4:2
Coxeter group, [4,3,4]
vertex figures
,
DualRectified cubic honeycomb
PropertiesCell-transitive, Face-transitive

The square bipyramidal honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. John Horton Conway calls it an oblate octahedrille or shortened to oboctahedrille.[5]

A cell can be seen positioned within a translational cube, with 4 vertices mid-edge and 2 vertices in opposite faces. Edges are colored and labeled by the number of cells around the edge.

It can be seen as a cubic honeycomb with each cube subdivided by a center point into 6 square pyramid cells. The original cubic honeycomb walls are removed, joining pairs of square pyramids into square bipyramids (octahedra). Its vertex and edge framework is identical to the hexakis cubic honeycomb.

There is one type of plane with faces: a flattened triangular tiling with half of the triangles as holes. These cut face-diagonally through the original cubes. There are also square tiling plane that exist as nonface holes passing through the centers of the octahedral cells.

Tiling
plane

Square tiling "holes"

flattened triangular tiling
Symmetry p4m, [4,4] (*442) pmm, [∞,2,∞] (*2222)

It is dual to the rectified cubic honeycomb with octahedral and cuboctahedral cells:

Phyllic disphenoidal honeycomb

Phyllic disphenoidal honeycomb
Eighth pyramidille[6]
(No image)
TypeDual uniform honeycomb
Coxeter-Dynkin diagrams
Cell
Phyllic disphenoid
Faces Rhombus
Triangle
Space group
Fibrifold notation
Coxeter notation
Im3m (229)
8o:2
[[4,3,4]]
Coxeter group[4,3,4],
vertex figures
,
DualOmnitruncated cubic honeycomb
PropertiesCell-transitive, face-transitive

The phyllic disphenoidal honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. John Horton Conway calls this an Eighth pyramidille.[7]

A cell can be seen as 1/48 of a translational cube with vertices positioned: one corner, one edge center, one face center, and the cube center. The edge colors and labels specify how many cells exist around the edge.

It is dual to the omnitruncated cubic honeycomb:

gollark: No, of course they do.
gollark: Routers might be mean about it and deny anything but TCP/UDP/ICMP.
gollark: Yes, if you are admin™.
gollark: No, that's UDP/TCP I think.
gollark: Just use my multicast chat program, coming never™.

See also

References

  1. Symmetry of Things, Table 21.1. Prime Architectonic and Catopric tilings of space, p.293, 295
  2. Symmetry of Things, Table 21.1. Prime Architectonic and Catopric tilings of space, p.293, 296
  3. Symmetry of Things, Table 21.1. Prime Architectonic and Catopric tilings of space, p.293, 296
  4. Symmetry of Things, Table 21.1. Prime Architectonic and Catopric tilings of space, p.293, 296
  5. Symmetry of Things, Table 21.1. Prime Architectonic and Catopric tilings of space, p.293, 295
  6. Symmetry of Things, Table 21.1. Prime Architectonic and Catopric tilings of space, p.293, 298
  7. Symmetry of Things, Table 21.1. Prime Architectonic and Catopric tilings of space, p.293, 298
  • Gibb, William (1990), "Paper patterns: solid shapes from metric paper", Mathematics in School, 19 (3): 2–4, reprinted in Pritchard, Chris, ed. (2003), The Changing Shape of Geometry: Celebrating a Century of Geometry and Geometry Teaching, Cambridge University Press, pp. 363–366, ISBN 0-521-53162-4.
  • Senechal, Marjorie (1981), "Which tetrahedra fill space?", Mathematics Magazine, Mathematical Association of America, 54 (5): 227–243, doi:10.2307/2689983, JSTOR 2689983.
  • Conway, John H.; Burgiel, Heidi; Goodman-Strauss, Chaim (2008). "21. Naming Archimedean and Catalan Polyhedra and Tilings". The Symmetries of Things. A K Peters, Ltd. pp. 292–298. ISBN 978-1-56881-220-5.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.