Solar power tower
The solar power tower, also known as 'central tower' power plants or 'heliostat' power plants or power towers, is a type of solar furnace using a tower to receive the focused sunlight. It uses an array of flat, movable mirrors (called heliostats) to focus the sun's rays upon a collector tower (the target). Concentrated solar thermal is seen as one viable solution for renewable, pollution-free energy.
| ||||
Concentrating solar power towers:
|
Early designs used these focused rays to heat water, and used the resulting steam to power a turbine. Newer designs using liquid sodium have been demonstrated, and systems using molten salts (40% potassium nitrate, 60% sodium nitrate) as the working fluids are now in operation. These working fluids have high heat capacity, which can be used to store the energy before using it to boil water to drive turbines. These designs also allow power to be generated when the sun is not shining.
Cost
In 2017, the US National Renewable Energy Laboratory (NREL) has estimated that by 2020 electricity could be produced from power towers for 5.47 cents per kWh.[1] In 2007, companies such as ESolar (then backed by Google.org) were developing cheap, low maintenance, mass producible heliostat components that were to reduce costs in the near future.[2] ESolar's design used large numbers of small mirrors (1.14 m²), to reduce costs for installing mounting systems such as concrete, steel, drilling, and cranes. In October 2017, an article in GreenTech Media suggested that eSolar ceased business in late 2016.[3]
Improvements in working fluid systems, such as moving from current two tank (hot/cold) designs to single tank thermocline systems with quartzite thermal fillers and oxygen blankets will improve material efficiency and reduce costs further.
Design
- Some concentrating solar power towers are air-cooled instead of water-cooled, to avoid using limited desert water[4]
- Flat glass is used instead of the more expensive curved glass[4]
- Thermal storage to store the heat in molten salt containers to continue producing electricity while the sun is not shining
- Steam is heated to 500 °C to drive turbines that are coupled to generators which produce electricity
- Control systems to supervise and control all the plant activity including the heliostat array positions, alarms, other data acquisition and communication.
Generally, installations use from 150 hectares (1,500,000 m2) to 320 hectares (3,200,000 m2).
Environmental concerns
There is evidence that such large area solar concentrating installations can kill birds that fly over them. Near the center of the array temperatures can reach 550 oC which, with the solar flux itself, is enough to incinerate birds while further away feathers are scorched leading to the eventual death of the bird. Workers at the Ivanpah solar power plant call these birds “streamers,” as they ignite in midair and plummet to the ground trailing smoke. During testing of the initial standby position for the heliostats, 115 birds were killed as they entered the concentrated solar flux. During the first 6 months of operations, a total of 321 birds were killed. After altering the standby procedure to focus no more than four heliostats on any one point, there have been no further bird fatalities.[5]
The Ivanpah Solar Power Facility is classified as a greenhouse gas emitter by the State of California because it has to burn fossil fuel for several hours each morning so that it can quickly reach its operating temperature.[6]
Commercial applications
Recently, there has been a renewed interest in solar tower power technology, as is evident from the fact that there are several companies involved in planning, designing and building utility size power plants. This is an important step towards the ultimate goal of developing commercially viable plants. There are numerous examples of case studies of applying innovative solutions to solar power.[7] Beam down tower application is also feasible with heliostats to heat the working fluid.[8]
Novel applications
The Pit Power Tower[9][10] combines a solar power tower and an aero-electric power tower[11] in a decommissioned open pit mine. Traditional solar power towers are constrained in size by the height of the tower and closer heliostats blocking the line of sight of outer heliostats to the receiver. The use of the pit mine's "stadium seating" helps overcome the blocking constraint.
As solar power towers commonly use steam to drive the turbines, and water tends to be scarce in regions with high solar energy, another advantage of open pits is that they tend to collect water, having been dug below the water table. The Pit Power Tower uses low heat steam to drive the pneumatic tubes in a co-generation system. A third benefit of re-purposing a pit mine for this kind of project is the possibility of reusing mine infrastructure such as roads, buildings and electricity.
Solar power towers
List of solar power towers
Name | Developer/Owner | Completed | Country | Town | Height m | Height ft | Collectors | Installed maximum capacity *(MW) | Yearly total energy production (GWh) |
---|---|---|---|---|---|---|---|---|---|
Mohammed bin Rashid Al Maktoum Solar Park | ACWA Power | 2020 | United Arab Emirates | Seih Al-Dahal, Dubai | 262 m | 860 ft | |||
Ashalim Power Station | Megalim Solar Power | 2018 | Isreal | Negev Desert | 260 m | 853 ft | 50,600 | 121 MW | 320 |
Ouarzazate Solar Power Station | Moroccan Agency for Sustainable Energy | 2009 | Morocco | Ouarzazate | 250 m | 820 ft | 7,400 | 150 MW | 500 |
Shouhang Dunhuang 100 MW Phase II[12] | Beijing Shouhang IHW | 2018 | China | Dunhuang | 220 m | 722 ft | 12,000 | 100 MW | 390[13] |
Qinghai Gonghe CSP[14] | 2019 | China | Gonghe | 210 m | 689 ft | 50 MW | 156.9 | ||
Khi Solar One | Abengoa | 2016 | South Africa | Upington | 205 m | 673 ft | 4,120 | 50 MW | 180 |
Crescent Dunes Solar Energy Project | SolarReserve | 2016 | United States | Tonopah | 200 m | 656 ft | 10,347 | 110 MW | 500 |
Supcon Solar Delingha[15] | Supcon Solar | 2016 | China | Delingha | 200 m | 656 ft | 50 MW | 146 | |
Haixi 50 MW CSP Project[16] | Luneng Qinghai Guangheng New Energy | 2019 | China | Haixi Zhou | 188 m | 617 ft | 4,400 | 50 MW | |
Hami 50 MW CSP Project[17][18] | Supcon Solar | 2019 | China | Hami | 180 m | 590 ft | 50 MW | ||
PS20 solar power plant | Abengoa Solar | 2009 | Spain | Sanlúcar la Mayor | 165 m | 541 ft | 1,255 | 20 MW | 48 |
Gemasolar Thermosolar Plant | Torresol Energy | 2011 | Spain | Sevilla | 140 m | 460 ft | 2,650 | 19.9 MW | 80 |
Ivanpah Solar Power Facility (3 towers) | BrightSource Energy | 2014 | United States | Mojave Desert | 139.9 m | 459 ft | 173,500 | 392 MW | 650 |
Shouhang Dunhuang 10 MW Phase I[19] | 2018 | China | Dunhuang | 138 m | 453 ft | 1,525[20] | 10 MW | ||
Sundrop Farms | Aalborg CSP | 2016 | Australia | Port Augusta | 127 m | 417 ft | 23,712[21] | 1.5 MW | |
PS10 solar power plant | Abengoa Solar | 2007 | Spain | Sanlúcar la Mayor | 115 m | 377 ft | 624 | 11 MW | 23.4 |
The Solar Project | U.S. Department of Energy | 1981 | United States | Mojave Desert | 100 m | 328 ft | 1,818 later 1,926 | 7 MW, later 10 MW | na, demolished |
Supcon Solar Delingha 10MW[22] (2 towers) | Supcon Solar | 2013 | China | Delingha | 100 m | 328 ft | 10 MW | ||
National Solar Thermal Test Facility | U.S. Department of Energy | 1978 | United States | Mojave Desert | 60 m | 200 ft | 1 MW (5-6 MWt) | na, demonstrator | |
Jülich Solar Tower | German Aerospace Center | 2008 | Germany | Jülich | 60 m | 200 ft | 2000 | 1.5 MW | na, demonstrator |
Greenway CSP Mersin Solar Tower Plant | Greenway CSP | 2013 | Turkey | Mersin | 60 m | 200 ft | 510 | 1 MW (5 MWt) | |
ACME Solar Tower[23] | ACME Group | 2011 | India | Bikaner | 46 m | 150 ft | 14,280 | 2.5 MW | |
Sierra SunTower (2 towers) | eSolar | 2010 | United States | Mojave Desert | 46 m | 150 ft[24] | 24,000 | 5 MW | na, demolished |
Jemalong Solar Thermal Station[25] | 2017 | Australia | Jemalong | 27 m | 89 ft | 3,500 | 1.1 MW (6 MWt) |
See also
- Concentrated solar power
- Feed-in tariff
- List of concentrating solar thermal power companies
- List of solar thermal power stations
- National Solar Thermal Test Facility (NSTTF)
- Solar furnace
- Solar thermal energy
References
- John Lowry (2017). Avoiding Carbon Apocalypse Through Alternative Energy: Life After Fossil Fuels. Springer. p. 33.
- Google's Goal: Renewable Energy Cheaper than Coal November 27, 2007
- Deign, Jason (12 October 2017). "Concentrated Solar Power Contender ESolar Goes AWOL". GreenTech Media. Retrieved 13 June 2019.
- "FAQs". Brightsourceenergy.com. Retrieved 2019-09-28.
- Kraemer, Susan (16 April 2015). "One Weird Trick Prevents Bird Deaths At Solar Towers". Clean Technica. Retrieved 20 February 2017.
- Danelski, David (21 October 2015). "It's not easy being green: Ivanpah solar plant near Nevada burns much natural gas, making it a greenhouse gas emitter under state law". Orange County Register. Santa Ana, California. Retrieved 14 September 2016.
- SOLAR POWER IN THE NEWS
- "Three solar modules of world's first commercial beam-down tower Concentrated Solar Power project to be connected to grid". Retrieved 18 August 2019.
- Pit Power Tower - Alternative Energy News Feb 2009
- Pit Power Tower US Patent
- Energy tower
- https://www.sh-ihw.es/dunhuang100
- https://solarpaces.nrel.gov/shouhang-dunhuang-100-mw-phase-ii
- http://www.supconsolar.com/en/cases/detail/id/12.html
- http://www.supconsolar.com/en/cases/detail/id/11.html
- https://solarpaces.nrel.gov/luneng-haixi-50mw-molten-salt-tower
- http://helioscsp.com/cpecc-hami-tower-concentrated-solar-power-project-to-be-completed-in-mid-2019/
- https://solarpaces.nrel.gov/hami-50-mw-csp-project
- https://solarpaces.nrel.gov/shouhang-dunhuang-10-mw-phase-i
- https://www.solarpaces.org/shouhang-and-edf-first-to-test-s-co2-cycle-in-concentrated-solar-power/
- https://solarpaces.nrel.gov/sundrop-csp-project
- http://www.supconsolar.com/en/cases/detail/id/10.html
- https://solarpaces.nrel.gov/acme-solar-tower
- https://www.pv-tech.org/editors-blog/esolar_sierra_suntower_project_offline_-_clarified
- https://vastsolar.com/portfolio-items/jemalong-solar-station-pilot-1-1mwe/
External links
- Cleantech Group picks winners and losers in concentrated solar thermal
- 'CSP' posts in Green Tech
- eSolar's demonstration plant in Lancaster, Calif.
- National Solar Thermal Test Facility
- Detailed Description of Central Receiver Systems
- Power Station Harnesses Sun's Rays BBC article about solar plant near Seville in Spain
- Description of first commercial Solar Power Tower
- vICERP A research cooperation with a demonstration plant in Juelich, Germany
- Solar Tower Plant Juelich Germany's first solar tower power plant in Juelich
- Heliostat fields on Google maps List of solar tower plants and solar furnaces with heliostat field on Google maps
- Zero Carbon Australia Stationery Energy Plan
Institutional links
- CSIRO > Divisions > CSIRO Energy Technology
- ESTELA > Technology > Tower Technology
- Promes Laboratory > Facilities > Solar concentrators > Themis
- PSA > Facilities > Central Receiver
- Sandia National Laboratory > National Solar Thermal Test Facility > Central Receiver Test Facility > Heliostats and tower capabilities
- Weizmann Institute > Environmental Sciences & Energy Research > Research > Energy Research
Commercial links
- Abengoa Solar > Technologies > Concentrating Solar Power > Power Tower
- Aora-Solar
- BrightSource Energy > Technology > How LPT Works
- Desertec > Concept > Technologies
- Device Logic
- eSolar > Heliostat solutions
- Kraftanlagen München > Field of activities > Renewable energies > Solar thermal power plants > Jülich experimental power plant
- Nur Energie > Projects > Tunisia
- SENER > Projects > Gemasolar
- Solar Reserve > Technology
- Torresol Energy > Technologies > Own technologies > Central-tower technology
- Experimental Solar Thermal Power Plant Jülich (Kraftanlagen München) – YouTube
- Greenway CSP