Renal urea handling

Renal urea handling is the part of renal physiology that deals with the reabsorption and secretion of urea. Movement of large amounts of urea across cell membranes is made possible by urea transporter proteins.

Urea allows the kidneys to create hyperosmotic urine (urine that has more ions in it - is "more concentrated" - than that same person's blood plasma). Preventing the loss of water in this manner is important if the person's body must save water in order to maintain a suitable blood pressure or (more likely) in order to maintain a suitable concentration of sodium ions in the blood plasma.

About 40% of the urea filtered is normally found in the final urine,[1] since there is more reabsorption than secretion along the nephron.

It is regulated by antidiuretic hormone, which controls the amount reabsorbed in the collecting duct system and secreted into the loop of Henle.

Overview table

Characteristic proximal tubule loop of Henle Distal convoluted tubule Collecting duct system
S1 S2 S3 descending limb thin ascending limb thick ascending limb connecting tubule initial collecting tubule cortical collecting ducts medullary collecting ducts
reabsorption (% compared to filtered amount) 50[1] 50
secretion (% compared to filtered amount) 50[1]
reabsorption (mmoles/day)
Concentration
electrical driving force (mV) -3[2] +3[2]+15[2]-5 to +5[2]-40[2]
chemical driving force (mV)
electrochemical driving force (mV)
apical transport proteins
  • unknown transporter[1]
basolateral transport proteins
  • unknown transporter[1]
  • unknown transporter[1]
  • urea transporter 4[1]
Other reabsorption features
gollark: Well, you could sacrifice your soul to me.
gollark: It is literally worse than the server running nginx for you and other things.
gollark: I don't actually need that.
gollark: Which for kit.osmarks.net is the osmarksßßßsserver™ in America.
gollark: Well, I can't really just assign people domains to do whatever, I have to point them to something.

References

  1. Walter F., PhD. Boron. Medical Physiology: A Cellular And Molecular Approach. Elsevier/Saunders. ISBN 1-4160-2328-3. Page 791
  2. Walter F., PhD. Boron. Medical Physiology: A Cellular And Molecular Approach. Elsevier/Saunders. ISBN 1-4160-2328-3. Page 777
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.