Pratt & Whitney J57
The Pratt & Whitney J57 (company designation: JT3C) is an axial-flow turbojet engine developed by Pratt & Whitney in the early 1950s. The J57 (first run January 1950[1]) was the first 10,000 lbf (45 kN) thrust class engine in the United States. The J57/JT3C was developed into the J75/JT4A turbojet, JT3D/TF33 turbofan, and PT5/T57 turboprop (of which only one was built).[2] The J57 and JT3C were extensively used on early jet airliners, bombers, and fighter planes for decades.
J57 / JT3C | |
---|---|
YJ57-P-3 cut-away demonstrator at USAF Museum | |
Type | Turbojet |
National origin | United States |
Manufacturer | Pratt & Whitney |
First run | 1950 |
Major applications | Boeing 707 Boeing B-52 Stratofortress Boeing KC-135 Stratotanker Douglas DC-8 North American F-100 Super Sabre Vought F-8 Crusader McDonnell F-101 Voodoo |
Number built | 21,170 built |
Developed from | Pratt & Whitney XT45 |
Variants | JT3D/TF33 |
Developed into | Pratt & Whitney J52/JT8A Pratt & Whitney J75/JT4A Pratt & Whitney XT57/PT5 |
Design and development
The J57 was a development of the Pratt & Whitney XT45 (PT4) turboprop engine that was originally intended for the Boeing XB-52. As the B-52 power requirements grew, the design evolved into a turbojet, the JT3.
Pratt & Whitney designed the J57 to have a relatively high overall pressure ratio to help improve both Thrust-specific fuel consumption and specific thrust, but it was known that throttling a single high pressure ratio compressor would cause stability problems. As Sir Stanley Hooker explains in his autobiography [3], the outlet area of a compressor is significantly smaller than that of its inlet, which is fine when operating at the design pressure ratio, but during starting and at low throttle settings the compressor pressure ratio is low so ideally the outlet area should be much larger than its design value. Put crudely the air taken in at the front cannot get out the back, which causes the blades at the front of the compressor to stall and vibrate. The compressor surges, which normally means the airflow reverses direction, causing a sharp drop in thrust.
By the late 1940s three potential solutions to the stability problem had been identified:
1) bleeding any excess compressed air at part speed overboard through interstage blow-off valves
2) incorporating variable geometry in the first few stages of the compressor
3) splitting the compressor into two units, one of which supercharges the other, with both units being mounted on separate shafts and driven by their own turbine
GE adopted the second option with their General Electric J79, whilst Pratt & Whitney adopted the two spool arrangement with their J57.
P&W realised that if they could develop a modest pressure ratio (< 4.5:1) axial compressor to handle adequately at any throttle setting including starting and acceleration, why not put two such compressors in series to achieve a higher overall pressure ratio?
In a two-spool arrangement the first compressor, usually called Low Pressure Compressor (LPC), is driven by the Low Pressure Turbine (LPT), and supercharges another unit known as the High Pressure Compressor (HPC) itself driven by the High Pressure Turbine (HPT). During starting the HP spool starts to rotate first, whilst the LP spool is stationary. As the HP spool accelerates and the fuel:air mixture in the combustor lights-up, at some point there is sufficient energy in the turbine gas stream to start to rotate the LP spool, which accelerates, albeit more sluggishly. Eventually, at full throttle, both spools will rotate at their design speeds. Because the exit temperature of the HPC is obviously higher than that of the LPC, a similar blade tip Mach number for both units is achieved by making the design HP shaft speed significantly higher than that of the LP shaft. Any reductions in compressor diameter going towards the combustor exaggerates the difference.
In the same timeframe as the J57, the Bristol Aeroplane Company Engine Division in the UK also adopted the two spool arrangement into their Rolls-Royce Olympus turbojet engine series, which went on to propel the Avro Vulcan bomber and later Concorde. Within a few months both P&W and Bristol had had a first run of their prototypes. Both demonstrated superb handling [4][5][6].
Today most civil and military turbofans have a two spool configuration, a notable exception being the Rolls-Royce Trent turbofan series which has three spools.
Incidentally, most modern civil turbofans use all three of the above options to handle the extremely high overall pressure ratios employed today (50:1 typically).
As the Applications section below indicates, during the 1950s the J57 was an extremely popular engine, with numerous military applications. Production figures were in the thousands, which led to a very reliable engine. Consequently it was only natural for Boeing to choose the J57 civil variant, the JT3C, for their 707 jetliner. Douglas did likewise with their DC8. Pressure to reduce jet noise and specific fuel consumption later resulted in P&W using an innovative modification to convert the JT3C turbojet into the JT3D two spool turbofan, initially for civil purposes, but also for military applications like the Boeing B-52H. The prestigious Collier Trophy for 1952 was awarded to Leonard S. Hobbs, Chief Engineer of United Aircraft Corporation, for "designing and producing the P&W J57 turbojet engine". The engine was produced from 1951 to 1965 with a total of 21,170 built.
The J57 used titanium alloys and the Ti-150 alloy used in the mid 1950s suffered hydrogen embrittlement[7]:412 until the problem was understood.
On May 25, 1953, a J57-powered YF-100A exceeded Mach 1 on its first flight.
Variants
Data from:Aircraft Engines of the World 1964/65[8], Aircraft engines of the World 1957[9]
|
|
Derivatives
Applications
- J57 (Military)
- Boeing B-52 Stratofortress
- Boeing C-135 Stratolifter and KC-135 Stratotanker
- Convair F-102 Delta Dagger
- Convair YB-60
- Douglas A3D Skywarrior
- Douglas F4D Skyray
- Douglas F5D Skylancer
- Lockheed U-2
- Martin B-57 Canberra
- McDonnell F-101 Voodoo
- North American F-100 Super Sabre
- Northrop SM-62 Snark
- Vought F-8 Crusader
- JT3C (Civilian)
Engines on display
- A J57 cutaway is on display at the New England Air Museum, Bradley International Airport, Windsor Locks, CT.[13]
- A J57 cutaway is on public display at the Aerospace Museum of California. It is s/n 35 used on the XB-52 program.
Specifications (J57-P-23)
Data from
General characteristics
- Type: Afterburning turbojet
- Length: 244 in (6197.6mm)
- Diameter: 39 in (990.6mm)
- Dry weight: 5,175 lb (2,347 kg)
Components
- Compressor: all-axial, 9-stage LP compressor, 7-stage HP compressor
- Combustors: cannular, 8 flame tubes
- Turbine: all-axial, single stage HP turbine, 2-stage LP turbine
Performance
- Maximum thrust: 11,700 lbf (52.0 kN) dry, 17,200 lbf (76.5 kN) with afterburner
- Overall pressure ratio: 11.5:1
- Air mass flow: 165 lb/s (75 kg/s) at maximum power
- Turbine inlet temperature: 1,600 °F (870 °C)
- Specific fuel consumption: 2.10 lb/(lbf⋅h) (59 g/(kN⋅s)) with afterburner
- Thrust-to-weight ratio: 3.32
Specifications (JT3C-7)
Data from Flight [14]
General characteristics
- Type: civil turbojet
- Length: 155in (3937mm)
- Diameter: 39in (990.6mm)
- Dry weight: 4200lb (1905kg)
Components
- Compressor: all-axial, 9-stage LP compressor, 7-stage HP compressor
- Combustors: cannular, 8 flame tubes
- Turbine: all-axial, single stage HP turbine, 2-stage LP turbine
Performance
- Maximum thrust: 12030 lbf (53.5 kN) @ take-off, SLS, ISA
- Overall pressure ratio: 12.5:1
- Air mass flow: 180 lb/s (81.65 kg/s)
- Specific fuel consumption: 0.785 lb/(lbf⋅h) (22.2 g/(kN⋅s)) @ take-off, SLS, ISA; and 0.909 lb/(lbf⋅h) (25.7 g/(kN⋅s)) @ max cruise 3,550 pounds-force (15.8 kN), M0.85, 35,000 ft (11,000 m), ISA
- Thrust-to-weight ratio: 3.44
See also
Related development
- Pratt & Whitney JT8A/J52
- Pratt & Whitney JT4A/J75
- Pratt & Whitney JT3D/TF33
- Pratt & Whitney XT57/PT5
Comparable engines
Related lists
References
Notes
- The Engines of Pratt & Whitney: A Technical History" Jack Connors, AIAA Inc. 2010, ISBN 978-1-60086-711-8, p. 225
- Gunston, p.167
- "Not much of an Engineer:an autobiography" Sir Stanley Hooker, Airlife Publishing Ltd. 1984, ISBN 0 906393 35 3, p.103
- "Not much of an Engineer:an autobiography" Sir Stanley Hooker, Airlife Publishing Ltd. 1984, ISBN 0 906393 35 3, p.142
- "American Airlines Experience with Turbojet/Turbofan Engines" K. F. Whatley , The American Society of Mechanical Engineers. 1962, ASME 62-GTP-16, p.5
- "Collier Trophy". www.aerofiles.com. Retrieved 16 April 2018.
- "Iroquois" a 1957 Flight article
- Wilkinson, Paul H. (1964). Aircraft engines of the World 1964/65 (19th ed.). London: Sir Isaac Pitman & Sons Ltd.
- Wilkinson, Paul H. (1957). Aircraft engines of the World 1957 (15th ed.). London: Sir Isaac Pitman & Sons Ltd. pp. 82–83.
- Taylor, John W.R. FRHistS. ARAeS (1962). Jane's All the World's Aircraft 1962-63. London: Sampson, Low, Marston & Co Ltd.
- Jane's All the World's Aircraft 1958. Sampson Low, Marston & Company. p. 444. OCLC 852161925.
- "First Douglas C-132 Details". Aviation Week. Vol. 65 no. 17. October 22, 1956. p. 35. ISSN 0005-2175.
- http://neam.org/index.php?option=com_content&view=article&layout=edit&id=1059 "Pratt & Whitney J57 (JTC3) Cutaway"
- Flightglobal archive - Flight International, 27 November 1953 Retrieved: 04 March 2017
Bibliography
- Taylor, John W.R. FRHistS. ARAeS (1962). Jane's All the World's Aircraft 1962-63. London: Sampson, Low, Marston & Co Ltd.
- Connors, Jack (2010). The Engines of Pratt & Whitney: A Technical History. Reston. Virginia: American Institute of Aeronautics and Astronautics. ISBN 978-1-60086-711-8.
- Francillon, René J. McDonnell Douglas Aircraft since 1920. London: Putnam, 1979. ISBN 0-370-00050-1.
- Gunston, Bill (2006). World Encyclopedia of Aero Engines, 5th Edition. Phoenix Mill, Gloucestershire, England, UK: Sutton Publishing Limited. ISBN 0-7509-4479-X.
External links
Wikimedia Commons has media related to Pratt & Whitney J57. |
- Pratt & Whitney History page on the J57/JT3
- Pratt & Whitney J57 Turbojet – National Museum of the United States Air Force
- Bill Gunston (November 27, 1953). "Two-Spool Turbo-Wasp". Flight magazine. pp. 697–699. ISSN 0015-3710.
- Pratt & Whitney Aircraft (April 15, 1957). "Aircraft Power - in Whatever Form It Takes". Aviation Week. Vol. 66 no. 15. pp. 60–61. ISSN 0005-2175.