Omnitruncated 6-simplex honeycomb

In six-dimensional Euclidean geometry, the omnitruncated 6-simplex honeycomb is a space-filling tessellation (or honeycomb). It is composed entirely of omnitruncated 6-simplex facets.

Omnitruncated 6-simplex honeycomb
(No image)
TypeUniform honeycomb
FamilyOmnitruncated simplectic honeycomb
Schläfli symbol{3[8]}
Coxeter–Dynkin diagrams
Facets
t0,1,2,3,4,5{3,3,3,3,3}
Vertex figure
Irr. 6-simplex
Symmetry×14, [7[3[7]]]
Propertiesvertex-transitive

The facets of all omnitruncated simplectic honeycombs are called permutahedra and can be positioned in n+1 space with integral coordinates, permutations of the whole numbers (0,1,..,n).

A*
6
lattice

The A*
6
lattice (also called A7
6
) is the union of seven A6 lattices, and has the vertex arrangement of the dual to the omnitruncated 6-simplex honeycomb, and therefore the Voronoi cell of this lattice is the omnitruncated 6-simplex.

= dual of

This honeycomb is one of 17 unique uniform honeycombs[1] constructed by the Coxeter group, grouped by their extended symmetry of the Coxeter–Dynkin diagrams:

Projection by folding

The omnitruncated 6-simplex honeycomb can be projected into the 4-dimensional cubic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:

gollark: I'm sure there are ones for unmanaged HDDs already.
gollark: <@107556764488069120> Make sure that the server and terminal server are linked in the rack GUI.
gollark: You probably should, as that also autoruns `autorun.lua` on disks.
gollark: Oh right, that would work too, probably, unless you disable that.
gollark: `man rc` I think.

See also

Regular and uniform honeycombs in 6-space:

Notes

References

  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
Fundamental convex regular and uniform honeycombs in dimensions 2-9
Space Family / /
E2 Uniform tiling {3[3]} δ3 hδ3 qδ3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 hδ4 qδ4
E4 Uniform 4-honeycomb {3[5]} δ5 hδ5 qδ5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 hδ6 qδ6
E6 Uniform 6-honeycomb {3[7]} δ7 hδ7 qδ7 222
E7 Uniform 7-honeycomb {3[8]} δ8 hδ8 qδ8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 hδ9 qδ9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 hδ10 qδ10
En-1 Uniform (n-1)-honeycomb {3[n]} δn hδn qδn 1k22k1k21
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.