Nontransitive game
A non-transitive game is a game for which the various strategies produce one or more "loops" of preferences. In a non-transitive game in which strategy A is preferred over strategy B, and strategy B is preferred over strategy C, strategy A is not necessarily preferred over strategy C.
A prototypical example non-transitive game is the game rock, paper, scissors which is explicitly constructed as a non-transitive game. In probabilistic games like Penney's game, the violation of transitivity results in a more subtle way, and is often presented as a probability paradox.
Examples
- Rock, paper, scissors
- Penney's game
- Nontransitive dice
gollark: Other side effects *do* exist.
gollark: Not *yet*.
gollark: Comic Sans is more popular, sadly.
gollark: One does not simply actually have any control of Discord.
gollark: ... are you rickrolling us?
References
- Gardner, Martin (2001). The Colossal Book of Mathematics. New York: W.W. Norton. ISBN 0-393-02023-1. Retrieved 15 March 2013.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.