Glycine dehydrogenase (decarboxylating)

Glycine decarboxylase also known as glycine cleavage system P protein or glycine dehydrogenase is an enzyme that in humans is encoded by the GLDC gene.[5][6][7]

GLDC
Identifiers
AliasesGLDC, GCE, GCSP, HYGN1, Glycine dehydrogenase, glycine decarboxylase
External IDsOMIM: 238300 MGI: 1341155 HomoloGene: 141 GeneCards: GLDC
Gene location (Human)
Chr.Chromosome 9 (human)[1]
Band9p24.1Start6,532,464 bp[1]
End6,645,783 bp[1]
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

2731

104174

Ensembl

ENSG00000178445

ENSMUSG00000024827

UniProt

P23378

Q91W43

RefSeq (mRNA)

NM_000170

NM_138595

RefSeq (protein)

NP_000161

NP_613061

Location (UCSC)Chr 9: 6.53 – 6.65 MbChr 19: 30.1 – 30.18 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse
glycine decarboxylase
Identifiers
EC number1.4.4.2
CAS number37259-67-9
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO

Reaction

Glycine decarboxylase (EC 1.4.4.2) is an enzyme that catalyzes the following chemical reaction:

glycine + H-protein-lipoyllysine H-protein-S-aminomethyldihydrolipoyllysine + CO2

Thus, the two substrates of this enzyme are glycine and H-protein-lipoyllysine, whereas its two products are H-protein-S-aminomethyldihydrolipoyllysine and CO2.

This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-NH2 group of donors with a disulfide as acceptor. This enzyme participates in glycine, serine and threonine metabolism. It employs one cofactor, pyridoxal phosphate.

Function

Glycine decarboxylase is the P-protein of the glycine cleavage system in eukaryotes. The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor. Carbon dioxide is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein.

Degradation of glycine is brought about by the glycine cleavage system, which is composed of four mitochondrial protein components: P protein (a pyridoxal phosphate-dependent glycine decarboxylase), H protein (a lipoic acid-containing protein), T protein (a tetrahydrofolate-requiring enzyme), and L protein (a lipoamide dehydrogenase).[7]

Clinical significance

Glycine encephalopathy is due to defects in GLDC or AMT of the glycine cleavage system.[7]

gollark: Imagine *not* continuing arbitrary internet arguments literally forever.
gollark: I see.
gollark: Even in a "natural" situation.
gollark: It doesn't matter. What I'm trying to get at here is that I don't see why you privilege the actual point at which an egg becomes fertilized that much, if your argument is just about potential to become another thing, since almost identical potential exists immediately before that.
gollark: Again, why? Before an egg is fertilized, there must necessarily exist some point at which it wasn't yet but that was likely to happen soon.

References

  1. GRCh38: Ensembl release 89: ENSG00000178445 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000024827 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Kume A, Koyata H, Sakakibara T, Ishiguro Y, Kure S, Hiraga K (Mar 1991). "The glycine cleavage system. Molecular cloning of the chicken and human glycine decarboxylase cDNAs and some characteristics involved in the deduced protein structures". J Biol Chem. 266 (5): 3323–9. PMID 1993704.
  6. Kure S, Narisawa K, Tada K (Mar 1991). "Structural and expression analyses of normal and mutant mRNA encoding glycine decarboxylase: three-base deletion in mRNA causes nonketotic hyperglycinemia". Biochem Biophys Res Commun. 174 (3): 1176–82. doi:10.1016/0006-291X(91)91545-N. PMID 1996985.
  7. "Entrez Gene: GLDC glycine dehydrogenase (decarboxylating)".

Further reading


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.