Giardia

Giardia (/ˈɑːrdiə/ or /ˈɑːrdiə/) is a genus of anaerobic flagellated protozoan parasites of the phylum metamonada that colonise and reproduce in the small intestines of several vertebrates, causing giardiasis. Their life cycle alternates between a swimming trophozoite and an infective, resistant cyst. Giardia were first described by the Dutch microscopist Antonie van Leeuwenhoek in 1681.[3] The genus is named after French zoologist Alfred Mathieu Giard.[4]

Giardia
Giardia trophozoite, SEM
Scientific classification
Domain:
(unranked):
Phylum:
Order:
Family:
Hexamitidae
Subfamily:
Genus:
Giardia

Künstler, 1882[1]
Species

Giardia agilis
Giardia ardeae
Giardia lamblia
Giardia microti
Giardia muris
Giardia psittaci

Synonyms
  • Lamblia R. Blanchard, 1888[2]

Characteristics

Like other diplomonads, Giardia have two nuclei, each with four associated flagella, and were thought to lack both mitochondria and a Golgi apparatus. However they are now known to possess a complex endomembrane system as well as mitochondrial remnants, called mitosomes, through mitochondrial reduction.[5] [6] [7][8] The mitosomes are not used in ATP synthesis the way mitochondria are, but are involved in the maturation of iron-sulfur proteins.[9] The synapomorphies of genus Giardia include cells with duplicate organelles, absence of cytostomes, and ventral adhesive disc.[10]

Systematics

About 40 species have been described from different animals, but many of them are probably synonyms.[11] Currently, five to six morphologically distinct species are recognised.[12] Giardia lamblia (=G. intestinalis, =G. duodenalis) infect humans and other mammals, G. muris is found from other mammals, G. ardeae and G. psittaci from birds, G. agilis from amphibians and G. microti from voles.[4] Other described, (but not certainly valid) species include:[13]

  • Giardia beckeri
  • Giardia beltrani
  • Giardia botauri
  • Giardia bovis
  • Giardia bradypi
  • Giardia canis
  • Giardia caprae
  • Giardia cati
  • Giardia caviae
  • Giardia chinchillae
  • Giardia dasi
  • Giardia equii
  • Giardia floridae
  • Giardia hegneri
  • Giardia herodiadis
  • Giardia hyderabadensis
  • Giardia irarae
  • Giardia marginalis
  • Giardia melospizae
  • Giardia nycticori
  • Giardia ondatrae
  • Giardia otomyis
  • Giardia pitymysi
  • Giardia pseudoardeae
  • Giardia recurvirostrae
  • Giardia sanguinis
  • Giardia serpentis
  • Giardia simoni
  • Giardia sturnellae
  • Giardia suricatae
  • Giardia tucani
  • Giardia varani
  • Giardia viscaciae
  • Giardia wenyoni

Many different species of Giardia exist, so to differentiate between species, very specific PCR (Polymerase Chain Reactions) have been developed to detect specific Giardia spp. Gene probe-based detection is also used to differentiate between species of Giardia. A more common and less time-consuming means of identifying different species of Giardia includes microscopy and immunofluorescence techniques.[14]

Genetic and biochemical studies have revealed the heterogeneity of Giardia lamblia, which contains probably at least eight lineages or cryptic species.[15]

Genome

A Giardia isolate (WB) was the first diplomonad to have its genome sequenced. Its 11.7 million basepair genome is compact in structure and content with simplified basic cellular machineries and metabolism. Currently the genomes of several other Giardia isolates and diplomonads (the fish pathogens Spironucleus vortens and S. salmonicida) are being sequenced.[16]

A second isolate (the B assemblage) from humans has been sequenced along with a species from a pig (the E assemblage).[17] There are ~5000 genes in the genome. The E assemblage is more closely related to the A assemblage than is the B. A number of chromosomal rearrangements are present.

Infection

An SEM micrograph of the small intestine of a gerbil infested with Giardia reveals a mucosa surface almost entirely obscured by attached trophozoites

Giardia lives in the intestines of infected humans or other animals, individuals of which become infected by ingesting or coming into contact with contaminated foods, soil, or water tainted by the feces of an infected carrier.[18]

The symptoms of Giardia, which may begin to appear 2 days after infection, include violent diarrhoea, excess gas, stomach or abdominal cramps, upset stomach, and nausea. Resulting dehydration and nutritional loss may need immediate treatment. A typical infection can be slight, resolve without treatment, and last between 2–6 weeks, although it can sometimes last longer and/or be more severe. Coexistence with the parasite is possible (symptoms fade), but an infected individual can remain a carrier and transmit it to others. Medication containing tinidazole or metronidazole decreases symptoms and time to resolution. Albendazole is also used, and has an anthelmintic (anti-worm) property as well, ideal for certain compounded issues when a general vermicidal agent is preferred. Giardia causes a disease called giardiasis, which causes the villi of the small intestine to atrophy and flatten, resulting in malabsorption in the intestine. Lactose intolerance can persist after the eradication of Giardia from the digestive tract.[19]

gollark: > nonaryDoes this mean *nine-argument*?
gollark: There are not presently plans to implement Emu War in potatOS.
gollark: So EWO couldn't work over it.
gollark: SPUDNET doesn't have a mechanism to address data to specific *untrusted* devices, although subchannels will provide a way to address data to specific *trusted* ones.
gollark: It... actually could *mostly* do that, but no.

See also

  • List of parasites (human)

References

  1. Künstler, J. (1882). "Sur cinq protozoaires parasites nouveaux". C. R. Acad. Sci. Paris. 95: 347–349.
  2. Blanchard, R. (1888). "Remarques sur le megastome intestinal". Bull. Soc. Zool. Fr. 30: 18–19.
  3. Stanley L. Erlandsen; Ernest A. Meyer (1 March 1984). Giardia and Giardiasis: Biology, Pathogenesis, and Epidemiology. Springer. pp. 131–. ISBN 978-0-306-41539-5.
  4. Adam RD (July 2001). "Biology of Giardia lamblia". Clin. Microbiol. Rev. 14 (3): 447–75. doi:10.1128/CMR.14.3.447-475.2001. PMC 88984. PMID 11432808.
  5. Tovar, Jorge; León-Avila, Gloria; Sánchez, Lidya; Sutak, Robert; Tachezy, Jan; van der Giezen, Mark; Hernández, Manuel; Müller, Miklós; Lucocq, John (2003). "Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation". Nature. 426 (6963): 172–176. Bibcode:2003Natur.426..172T. doi:10.1038/nature01945. PMID 14614504.
  6. Anna Karnkowska; et al. (May 2016). "A Eukaryote without a Mitochondrial Organelle". Current Biology. 26 (10): 1274–1284. doi:10.1016/j.cub.2016.03.053. PMID 27185558.
  7. Soltys BJ, Falah M, Gupta RS (July 1996). "Identification of endoplasmic reticulum in the primitive eukaryote Giardia lamblia using cryoelectron microscopy and antibody to Bip". J. Cell Sci. 109 (Pt 7): 1909–17. PMID 8832413.
  8. Dolezal P; Smíd O; Rada P; et al. (August 2005). "Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting". Proc. Natl. Acad. Sci. U.S.A. 102 (31): 10924–9. Bibcode:2005PNAS..10210924D. doi:10.1073/pnas.0500349102. PMC 1182405. PMID 16040811.
  9. Tovar J, et al. (2003). "Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation". Nature. 426 (6963): 172–6. Bibcode:2003Natur.426..172T. doi:10.1038/nature01945. PMID 14614504.
  10. Cepicka, Ivan (September 2008). "Fornicata". Tree of Life Web Project.
  11. Meyer E.A.; Radulescu S. (1979). "Giardia and Giardiasis". Advances in Parasitology. 17: 1–47. doi:10.1016/S0065-308X(08)60548-5. ISBN 9780120317172. PMID 395833. no
  12. Brusca, R.C.; Brusca, G.J. (2003). Invertebrates (2nd ed.). Sinauer Associates. ISBN 0878930973.
  13. "Giardia Kunstler". Tree of Life Web Project. September 2008.
  14. Mahbubani 1992
  15. Thompson RC, Monis PT (2004). "Variation in Giardia: implications for taxonomy and epidemiology". Adv. Parasitol. Advances in Parasitology. 58: 69–137. doi:10.1016/S0065-308X(04)58002-8. ISBN 9780120317585. PMID 15603762.
  16. Andersson, JO; et al. (2010). "The Genome of Giardia and Other Diplomonads". Anaerobic Parasitic Protozoa: Genomics and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-61-5.
  17. Jerlström-Hultqvist J, Ankarklev J, Svärd SG (2010). "Is human giardiasis caused by two different Giardia species?". Gut Microbes. 1 (6): 379–82. doi:10.4161/gmic.1.6.13608. PMC 3056102. PMID 21468219.
  18. Filice, F.P. (1952). "Studies on the cytology and life history of a Giardia from the laboratory rat". U. C. Publications in Zoology. Berkeley CA: University of California Press. 5sex7 (2).
  19. LaCour 2003
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.