Fish ladder

A fish ladder, also known as a fishway, fish pass or fish steps, is a structure on or around artificial and natural barriers (such as dams, locks and waterfalls) to facilitate diadromous fishes' natural migration as well as movements of potamodromous species.[1] Most fishways enable fish to pass around the barriers by swimming and leaping up a series of relatively low steps (hence the term ladder) into the waters on the other side. The velocity of water falling over the steps has to be great enough to attract the fish to the ladder, but it cannot be so great that it washes fish back downstream or exhausts them to the point of inability to continue their journey upriver.

Pool-and-weir fish ladder at Bonneville Dam on the Columbia River

History

Denil Fishway on Salmon Creek, Montana

Written reports of rough fishways date to 17th-century France, where bundles of branches were used to create steps in steep channels to bypass obstructions. A version was patented in 1837 by Richard McFarlan of Bathurst, New Brunswick, Canada, who designed a fishway to bypass a dam at his water-powered lumber mill.[2] In 1852–1854, the Ballisodare Fish Pass was built in County Sligo in Ireland to draw salmon into a river that had not supported a fishery. In 1880, the first fish ladder was built in Rhode Island, United States, on the Pawtuxet Falls Dam. The ladder was removed in 1924, when the City of Providence replaced the wood dam with a concrete one. Concrete ladders are not always an improvement – the electric field-sensitive organs of the paddlefish are overloaded in the proximity of the rebar and other metal used in concrete construction, preventing them from gaining access to their spawning grounds and contributing to a catastrophic decline in their numbers.

As the Industrial Age advanced, dams and other river obstructions became larger and more common, leading to the need for effective fish by-passes.[3]

Types

There are six main types of fishways:

Pool and weir
One of the oldest styles of fish ladders. It uses a series of small dams and pools of regular length to create a long, sloping channel for fish to travel around the obstruction. The channel acts as a fixed lock to gradually step down the water level; to head upstream, fish must jump over from box to box in the ladder.
Baffle fishway
Uses a series of symmetrical close-spaced baffles in a channel to redirect the flow of water, allowing fish to swim around the barrier. Baffle fishways need not have resting areas, although pools can be included to provide a resting area or to reduce the velocity of the flow. Such fishways can be built with switchbacks to minimize the space needed for their construction. Baffles come in variety of designs. The original design for a Denil fishway was developed in 1909 by a Belgian scientist, G. Denil; it has since been adjusted and adapted in many ways. The Alaskan Steeppass, for example, is a modular prefabricated Denil-fishway variant originally designed for remote areas of Alaska. Baffles have been installed by Project Maitai in several waterways in Nelson, New Zealand, to improve fish passage as part of general environmental restoration.
Fish elevator (or fish lift)
Breaks with the ladder design by providing a sort of elevator to carry fish over a barrier. It is well suited to tall barriers. With a fish elevator, fish swim into a collection area at the base of the obstruction. When enough fish accumulate in the collection area, they are nudged into a hopper that carries them into a flume that empties into the river above the barrier. On the Connecticut River, for example, two fish elevators lift up to 500 fish at a time, 52 feet (15.85 m), to clear the Holyoke Dam. In 2013, the elevator carried over 400,000 fish.[4]
Rock-ramp fishway
Uses large rocks and timbers to create pools and small falls that mimic natural structures. Because of the length of the channel needed for the ladder, such structures are most appropriate for relatively short barriers. They have a significant advantage in that they can provide fish spawning habitat.[5]
Vertical-slot fish passage
Similar to a pool-and-weir system, except that each "dam" has a narrow slot in it near the channel wall. This allows fish to swim upstream without leaping over an obstacle. Vertical-slot fish passages also tend to handle reasonably well the seasonal fluctuation in water levels on each side of the barrier. Recent studies suggest that navigation locks have a potential to be operated as vertical slot fishways to provide increased access for a range of biota, including poor swimmers.[6][7]
Fish siphon
Allows the pass to be installed parallel to a water course and can be used to link two watercourses. The pass utilises a syphon effect to regulate its flow. This style is particularly favoured to aid flood defence.

Effectiveness

Fish ladders have a mixed record of effectiveness. They vary in effectiveness for different types of species, with one study showing that only three percent of American Shad make it through all the fish ladders on the way to their spawning ground.[8] Effectiveness depends on the fish species' swimming ability, and how the fish moves up and downstream. A fish passage that is designed to allow fish to pass upstream may not allow passage downstream, for instance.[9] Fish passages do not always work. In practice a challenge is matching swimming performance data to hydrodynamic measurements.[10][11] Swim tests rarely use the same protocol and the output is either a single-point measurement or a bulk velocity. In contrast, physical and numerical modelling of fluid flow (i.e. hydrodynamics) deliver a detailed flow map, with a fine spatial and temporal resolution. Regulatory agencies face a difficult task to match hydrodynamic measurements and swimming performance data.

Culverts

During the last three decades, the ecological impact of culverts on natural streams and rivers has been recognised. While the culvert discharge capacity derives from hydrological and hydraulic engineering considerations,[12] this results often in large velocities in the barrel, creating a possible fish passage barrier.

Baffles may be installed along the barrel invert to provide some fish-friendly alternative.[13][14][15] For low discharges, the baffles decrease the flow velocity and increase the water depth to facilitate fish passage. At larger discharges, baffles induce lower local velocities and generate recirculation regions. Unfortunately, baffles can reduce drastically the culvert discharge capacity for a given afflux,[16] thus increasing substantially the total cost of the culvert structure to achieve the same design discharge and afflux. It is believed that fish-turbulence interplay may facilitate upstream migration, albeit an optimum design must be based upon a careful characterisation of both hydrodynamics and fish kinematics.[11][17][18] Finally the practical engineering design implications cannot be ignored, while a solid understanding of turbulence typology is a basic requirement to any successful boundary treatment conducive of upstream fish passage.[19]

gollark: This is clear racism. Deploying bees.
gollark: ABR could let people self-assign color roles.
gollark: How exciting.
gollark: People probably can't distinguish that many colors very well. So we can just have a pool of 60 or so.
gollark: You misspelt "more" somehow?

See also

FERC Fish Ladder Safety Sign

Notes

  1. "What is a Fish Ladder?". Michigan: Michigan Department of Natural Resources. Retrieved 27 April 2012.
  2. Mario Theriault, Great Maritime Inventions 1833–1950, Goose Lane, 2001, p. 45
  3. Office Of Technology Assessment Washington DC (1995) Fish passage technologies : protection at hydropower facilities Diana Publishing, ISBN 1-4289-2016-1.
  4. "2013 Connecticut River Migratory Fish". U.S. Fish and Wildlife Service. United States Fish and Wildlife Service. Retrieved October 25, 2016.
  5. Luther P. Aadland (2010). Reconnecting Rivers: Natural Channel Design in Dam Removals and Fish Passage. Minnesota Department of Natural Resources.
  6. Silva S., Lowry M., Macaya-Solis C., Byatt B., Lucas M. C. (2017). "Can navigation locks be used to help migratory fishes with poor swimming performance pass tidal barrages? A test with lampreys". Ecological Engineering. 102: 291–302. doi:10.1016/j.ecoleng.2017.02.027.CS1 maint: multiple names: authors list (link)
  7. Quaranta, E., Katopodis, C., Revelli, R., Comoglio, C. (2017). Turbulent flow field comparison and related suitability for fish passage of a standard and a simplified low‐gradient vertical slot fishway. River Research and Applications, 33, 1295-1305.
  8. Waldman, John. "Blocked Migration: Fish Ladders On U.S. Dams Are Not Effective". Yale Environment 360. Yale School of Forestry and Environmental Sciences. Retrieved 18 March 2016.
  9. Kraft, Amy (February 20, 2013). "Upstream Battle: Fishes Shun Modern Dam Passages, Contributing to Population Declines". Scientific American. Scientific American. Retrieved 18 March 2016.
  10. Katopodis, C., Gervais, R.] (2016). "Fish Swimming Performance Database and Analyses". DFO CSAS Research Document No. 2016/002, Canadian Science Advisory Secretariat, Fisheries and Oceans Canada, Ottawa, Canada: 1–550.CS1 maint: multiple names: authors list (link)
  11. Wang, H., Chanson, H. (2017). "How a better understanding of Fish-Hydrodynamics Interactions might enhance upstream fish passage in culverts". Civil Engineering Research Report No. CE162: 1–43.CS1 maint: multiple names: authors list (link)
  12. Chanson, H. (2004). The Hydraulics of Open Channel Flow: An Introduction. Butterworth-Heinemann, 2nd edition, Oxford, UK. ISBN 978-0-7506-5978-9.
  13. Olsen, A. and Tullis, B. (2013). "Laboratory Study of Fish Passage and Discharge Capacity in Slip-Lined, Baffled Culverts". Journal of Hydraulic Engineering. 139 (4): 424–432. doi:10.1061/(asce)hy.1943-7900.0000697. ISSN 0733-9429.CS1 maint: multiple names: authors list (link)
  14. Chanson, H. and Uys, W. (2016). "Baffle Designs to Facilitate Fish Passage in Box Culverts: A Preliminary Study". 6th IAHR International Symposium on Hydraulic Structures, Hydraulic Structures and Water System Management: 295–304. doi:10.15142/T300628160828. ISBN 978-1-884575-75-4.CS1 maint: multiple names: authors list (link)
  15. Cabonce, J., Fernando, R., Wang, H., Chanson, H. (2017). Using Triangular Baffles to Facilitate Upstream Fish Passage in Box Culverts: Physical Modelling. Hydraulic Model Report No. CH107/17, School of Civil Engineering, The University of Queensland, Brisbane, Australia, 130 pages. ISBN 978-1-74272-186-6.CS1 maint: multiple names: authors list (link)
  16. Larinier, M. (2002). "Fish Passage through Culverts, Rock Weirs and Estuarine Obstructions". Bulletin Français de la Pêche et de la Pisciculture. 364 (18): 119–134. doi:10.1051/kmae/2002097.
  17. Wang, H., Chanson, H. (2017). "Baffle Systems to Facilitate Upstream Fish Passage in Standard Box Culverts: How About Fish-Turbulence Interplay?". 37th IAHR World Congress, IAHR & USAINS, Kuala Lumpur, Malaysia. 3: 2586–2595.CS1 maint: multiple names: authors list (link)
  18. Wang, H., Chanson, H. (2018). "Modelling Upstream Fish Passage in Standard Box Culverts: Interplay between Turbulence, Fish Kinematics, and Energetics" (PDF). River Research and Applications. 34 (3): 244–252. doi:10.1002/rra.3245.CS1 maint: multiple names: authors list (link)
  19. Chanson, H. (2019). "Utilising the Boundary Layer to Help Restore the Connectivity of Fish Habitats and Populations. An Engineering Discussion". Ecological Engineering. 141 (105613): 105613. doi:10.1016/j.ecoleng.2019.105613.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.