Deciduous

In the fields of horticulture and botany, the term deciduous (/dɪˈsɪdjuːəs/; US: /dɪˈsɪuəs/)[1] means "falling off at maturity"[2] and "tending to fall off",[3] in reference to trees and shrubs that seasonally shed leaves, usually in the autumn; to the shedding of petals, after flowering; and to the shedding of ripe fruit. The antonym of deciduous in the botanical sense is evergreen.

Deciduous forest
Three deciduous forests shown summer, autumn and winter

Generally, the term deciduous means "the dropping of a part that is no longer needed or useful to the plant" and the "falling away [just a part] after its purpose is finished". In plants, it is the result of natural processes. "Deciduous" has a similar meaning when referring to animal parts, such as deciduous antlers in deer,[4] deciduous teeth (baby teeth) in some mammals (including humans); or decidua, the uterine lining that sheds off after birth.

Botany

In botany and horticulture, deciduous plants, including trees, shrubs and herbaceous perennials, are those that lose all of their leaves for part of the year.[5] This process is called abscission.[6] In some cases leaf loss coincides with winter—namely in temperate or polar climates.[7] In other parts of the world, including tropical, subtropical, and arid regions, plants lose their leaves during the dry season or other seasons, depending on variations in rainfall.

The converse of deciduous is evergreen, where foliage is shed on a different schedule from deciduous trees, therefore appearing to remain green year round.[8] Plants that are intermediate may be called semi-deciduous; they lose old foliage as new growth begins.[9] Other plants are semi-evergreen and lose their leaves before the next growing season, retaining some during winter or dry periods.[10]

Like a number of other deciduous plants, Forsythia flowers during the leafless season.

Many deciduous plants flower during the period when they are leafless, as this increases the effectiveness of pollination. The absence of leaves improves wind transmission of pollen for wind-pollinated plants and increases the visibility of the flowers to insects in insect-pollinated plants. This strategy is not without risks, as the flowers can be damaged by frost or, in dry season regions, result in water stress on the plant.

The conditions that trigger leafout in spring can vary depending on the species or genera of plant. Most herbaceous perennials and some woody plants are triggered to leaf out by warming air or soil temperatures, for example birches (Betula) and willows (Salix) will attempt to send out flowers and/or leaves if there are a few days where ambient air temperatures exceed 50°F (10°C). This strategy is risky as a renewed burst of cold air may freeze off the new growth. Other woody plants such as oaks, walnuts, and hickories leaf out based on photoperiod, meaning they wait until the day length is long enough. These tend to be plants that have frost-intolerant foliage, so leafout is held off until late spring when the danger of frost has largely passed.

Leaf drop in the fall months is based on photoperiod and varies by genera and species. Walnuts tend to drop their leaves early while some trees such as Norway Maple and willows have extremely late leaf drop, often in the middle of November.

Leaf drop or abscission involves complex physiological signals and changes within plants. The process of photosynthesis steadily degrades the supply of chlorophylls in foliage; plants normally replenish chlorophylls during the summer months. When autumn arrives and the days are shorter or when plants are drought-stressed,[11] deciduous trees decrease chlorophyll pigment production, allowing other pigments present in the leaf to become apparent, resulting in non-green colored foliage. The brightest leaf colors are produced when days grow short and nights are cool, but remain above freezing.[12] These other pigments include carotenoids that are yellow, brown, and orange. Anthocyanin pigments produce red and purple colors, though they are not always present in the leaves. Rather, they are produced in the foliage in late summer, when sugars are trapped in the leaves after the process of abscission begins. Parts of the world that have showy displays of bright autumn colors are limited to locations where days become short and nights are cool. In other parts of the world, the leaves of deciduous trees simply fall off without turning the bright colors produced from the accumulation of anthocyanin pigments.

The beginnings of leaf drop starts when an abscission layer is formed between the leaf petiole and the stem. This layer is formed in the spring during active new growth of the leaf; it consists of layers of cells that can separate from each other. The cells are sensitive to a plant hormone called auxin that is produced by the leaf and other parts of the plant. When auxin coming from the leaf is produced at a rate consistent with that from the body of the plant, the cells of the abscission layer remain connected; in autumn, or when under stress, the auxin flow from the leaf decreases or stops, triggering cellular elongation within the abscission layer. The elongation of these cells break the connection between the different cell layers, allowing the leaf to break away from the plant. It also forms a layer that seals the break, so the plant does not lose sap.

Some trees, particularly oaks and beeches, exhibit a behavior known as "marcescence" whereby dead leaves are not shed in the fall and remain on the tree until being blown off by the weather. This is caused by incomplete development of the abscission layer. It is mainly seen in the seedling and sapling stage, although mature trees may have marcescence of leaves on the lower branches.

A number of deciduous plants remove nitrogen and carbon from the foliage before they are shed and store them in the form of proteins in the vacuoles of parenchyma cells in the roots and the inner bark. In the spring, these proteins are used as a nitrogen source during the growth of new leaves or flowers.[13]

Function

Deciduous plants in mid- to high latitudes shed their leaves as temperatures drop in autumn.[14]

Plants with deciduous foliage have advantages and disadvantages compared to plants with evergreen foliage. Since deciduous plants lose their leaves to conserve water or to better survive winter weather conditions, they must regrow new foliage during the next suitable growing season; this uses resources which evergreens do not need to expend. Evergreens suffer greater water loss during the winter and they also can experience greater predation pressure, especially when small. Deciduous trees experience much less branch and trunk breakage from glaze ice storms when leafless, and plants can reduce water loss due to the reduction in availability of liquid water during cold winter days.[15]Losing leaves in winter may reduce damage from insects; repairing leaves and keeping them functional may be more costly than just losing and regrowing them.[16] Removing leaves also reduces cavitation which can damage xylem vessels in plants. This then allows deciduous plants to have xylem vessels with larger diameters and therefore a greater rate of transpiration (and hence CO2 uptake as this occurs when stomata are open) during the summer growth period.

Deciduous woody plants

The deciduous characteristic has developed repeatedly among woody plants. Trees include maple, many oaks and nothofagus, elm, beech, aspen, and birch, among others, as well as a number of coniferous genera, such as larch and Metasequoia. Deciduous shrubs include honeysuckle, viburnum, and many others. Most temperate woody vines are also deciduous, including grapes, poison ivy, Virginia creeper, wisteria, etc. The characteristic is useful in plant identification; for instance in parts of Southern California and the American Southeast, deciduous and evergreen oak species may grow side by side.

Periods of leaf fall often coincide with seasons: winter in the case of cool-climate plants or the dry-season in the case of tropical plants,[17] however there are no deciduous species among tree-like monocotyledonous plants, e.g. palms, yuccas, and dracaenas. The hydrangea hirta is a deciduous woody shrub found in Japan.

Regions

Deciduous trees were introduced to the temperate regions of Australia where they are used as ornamental plants, as seen here at a suburban street in Sydney.

Forests where a majority of the trees lose their foliage at the end of the typical growing season are called deciduous forests. These forests are found in many areas worldwide and have distinctive ecosystems, understory growth, and soil dynamics.[18]

Two distinctive types of deciduous forest are found growing around the world.

Temperate deciduous forest biomes are plant communities distributed in North and South America, Asia, Southern slopes of the Himalayas, Europe and for cultivation purposes in Oceania. They have formed under climatic conditions which have great seasonable temperature variability with growth occurring during warm summers and leaf drop in autumn and dormancy during cold winters. These seasonally distinctive communities have diverse life forms that are impacted greatly by the seasonality of their climate, mainly temperature and precipitation rates. These varying and regionally different ecological conditions produce distinctive forest plant communities in different regions.

Tropical and subtropical deciduous forest biomes have developed in response not to seasonal temperature variations but to seasonal rainfall patterns. During prolonged dry periods the foliage is dropped to conserve water and prevent death from drought. Leaf drop is not seasonally dependent as it is in temperate climates, and can occur any time of year and varies by region of the world. Even within a small local area there can be variations in the timing and duration of leaf drop; different sides of the same mountain and areas that have high water tables or areas along streams and rivers can produce a patchwork of leafy and leafless trees.[19]

gollark: Hmm...
gollark: ?coliru```c#include <stdio.h>#define S2(x) ##x#define S(x) S2(x)#define A2(x, ...) x(x(__VA_ARGS__))#define R2(x) x x#define R4(x) A2(R2, x)#define R8(x) A2(R4, x)#define R16(x) A2(R8, x)#define QUITELONG R16(long)int main(){printf(S(QUITELONG));return 42;}```
gollark: ?coliru```c#include <stdio.h>#define A2(x, ...) x(x(__VA_ARGS__))#define R2(x) x x#define R4(x) A2(R2, x)#define R8(x) A2(R4, x)#define R16(x) A2(R8, x)#define QUITELONG R16(long)int main(){printf(QUITELONG);return 42;}```
gollark: Hmm...
gollark: ?coliru```c#include <stdio.h>#define A2(x, ...) x(x(__VA_ARGS__))#define R2(x) x x#define R4(x) A2(R2, x)#define R8(x) A2(R4, x)#define R16(x) A2(R8, x)#define QUITELONG R16(long)int main(){printf("QUITELONG");return 42;}```

See also

References

  1. "deciduous (adjective)". Oxford Advanced Learner's Dictionary at OxfordLearnersDictionaries.com.
  2. William Dwight Whitney; Century Dictionary. The Century Dictionary and Cyclopedia: Dictionary. books.google.com. p. 1484.
  3. Debra J. Housel; Capstone Publishers (2009). Ecosystems. books.google.com. ISBN 9780756540685.
  4. Gause, John Taylor (1955). The Complete Word Hunter. A Crowell reference book. New York: Crowell. p. 465.
  5. University of the Western Cape. "Trees that lose their leaves". botany.uwc.ac.za. Archived from the original on 25 March 2013.
  6. Dr. Kim D. Coder; University of Georgia (1999). "Falling Tree Leaves: Leaf Abscission" (PDF). forestry.uga.edu. Archived from the original (PDF) on 18 May 2013.
  7. Science Daily. "Reference article : "Deciduous" in Wikipedia". sciencedaily.com. Archived from the original on 25 April 2015. Retrieved 23 March 2020.
  8. J. Robert Nuss; Pennsylvania State University (2007). "Evergreen Shrubs and Trees for Pennsylvania" (PDF). psu.edu. Retrieved 23 March 2020.
  9. "Glossary of Botanical Terms" (PDF). The Illinois - North Carolina Collaborative Environment for Botanical Resources: Openkey Project. p. 22. Retrieved 23 March 2020.
  10. Weber, William; Lee J. T. White; Amy Vedder; Lisa Naughton-Treves (2001). African rain forest ecology and conservation an interdisciplinary perspective. New Haven: Yale University Press. p. 15..
  11. Mohammad Pessarakli (2005). Handbook of photosynthesis. CRC Press. pp. 725–. ISBN 978-0-8247-5839-4. Retrieved 9 October 2010.
  12. Donald W. Linzey (1 April 2008). A natural history guide to Great Smoky Mountains National Park. Univ. of Tennessee Press. pp. 27–. ISBN 978-1-57233-612-4. Retrieved 9 October 2010.
  13. Srivastava, Lalit M. (2002). Plant growth and development. Hormones and environment. Amsterdam: Academic Press. p. 476. ISBN 0-12-660570-X.
  14. Bonan, Gordon (2015). Ecological Climatology: Concepts and Applications. Cambridge University Press. p. 294. ISBN 9781316425190.
  15. Lemon, P. C. (1961). "Forest ecology of ice storms". Bulletin of the Torrey Botanical Club. Bulletin of the Torrey Botanical Club. 88 (1): 21. doi:10.2307/2482410. JSTOR 2482410.
  16. Labandeira, C. C.; Dilcher, D. L.; Davis, D. R.; Wagner, D. L. (1994). "Ninety-seven million years of angiosperm-insect association: paleobiological insights into the meaning of coevolution". Proceedings of the National Academy of Sciences of the United States of America. 91 (25): 12278–12282. Bibcode:1994PNAS...9112278L. doi:10.1073/pnas.91.25.12278. PMC 45420. PMID 11607501.
  17. Cundall, Peter (2005). Flora: The Gardener’s Bible: Over 20,000 Plants. Ultimo, NSW, Australia: ABC Publishing. ISBN 0-7333-1094-X.
  18. Röhrig, Ernst; Ulrich, Bernhard, eds. (1991). Temperate deciduous forests. Ecosystems of the world, 7. Amsterdam: Elsevier. ISBN 0-444-88599-4.
  19. Bullock, Stephen H.; J. Arturo Solis-Magallanes (March 1990). "Phenology of Canopy Trees of a Tropical Deciduous Forest in Mexico". Biotropica. 22 (1): 22–35. doi:10.2307/2388716. JSTOR 2388716.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.