Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium

Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium is the organoruthenium half-sandwich compound with formula RuCl(PPh3)2(C5H5). It as an air-stable orange crystalline solid that is used in a variety of organometallic synthetic and catalytic transformations. The compound has idealized Cs symmetry. It is soluble in chloroform, dichloromethane, and acetone.

CpRuCl(PPh3)2
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.154.457
Properties
C41H35ClP2Ru
Molar mass 726.19 g/mol
Appearance Orange solid
Melting point 135 °C (275 °F; 408 K)
Insoluble
Hazards
GHS pictograms
GHS Signal word Warning
GHS hazard statements
H302, H312, H315, H319, H332, H335
P261, P264, P270, P271, P280, P301+312, P302+352, P304+312, P304+340, P305+351+338, P312, P321, P322, P330, P332+313, P337+313, P362, P363, P403+233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Preparation

Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium was first reported in 1969 when it was prepared by reacting dichlorotris(triphenylphosphine)ruthenium(II) with cyclopentadiene.[1]

RuCl2(PPh3)3 + C5H6 → RuCl(PPh3)3(C5H5) + HCl

It is prepared by heating a mixture of ruthenium(III) chloride, triphenylphosphine, and cyclopentadiene in ethanol.[2]

Reactions

Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium(II) undergoes a variety of reactions often by involving substitution of the chloride. With phenylacetylene it gives the phenyl vinylidene complex:

(C5H5)(PPh3)2RuCl + HC2Ph + NH4[PF6] → [Ru(C:CHPh)(PPh3)2(C5H5)][PF6] + NH4Cl

Displacement of one PPh3 by carbon monoxide affords a chiral compound.[3]

(C5H5)(PPh3)2RuCl + CO → (C5H5)(PPh3)(CO)RuCl + PPh3

The compound can also be converted into the hydride:[4]

(C5H5)(PPh3)2RuCl + NaOMe → (C5H5)(PPh3)2RuH + NaCl + CH2O

A related complex is tris(acetonitrile)cyclopentadienylruthenium hexafluorophosphate, which has three labile MeCN ligands.

Applications

Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium(II) serves as a catalyst for a variety of specialized reactions. For example, in the presence of NH4PF6 it catalyzes the isomerisation of allylic alcohols to the corresponding saturated carbonyls.[5]

gollark: "I fear apioforms"
gollark: "I was involved in the COMPARTMENTAL SLATS initiative"
gollark: Yes, it would be.
gollark: Oh, right.
gollark: Good vectors have a length and capacity.

References

  1. Gilbert JD, Wilkinson, G (1969). "New Complexes of Ruthenium(II) with Triphenylphosphine and other Ligands". J. Chem. Soc.: 1749. doi:10.1039/J19690001749.
  2. Bruce, M. I.; Hamiester, C., Swincer, A. G., Wallis, R. C. "Some η5-Cyclopentadienylruthenium(II) Complexes Containing Triphenylphosphine" Inorganic Syntheses 1982, volume 21, pp 78-82. doi:10.1002/9780470132524
  3. Blackmore T, Bruce MI, Stone, F. G. A. (1971). "Some New η-Cyclopentadienyltuthenium Complexes". J. Chem. Soc. A: 2376–2382. doi:10.1039/J19710002376.
  4. Wilczewski, T.; Bochenska, M. & Biernat, J. (1981). "Cyclobentadienyl-Ruthenium Complexes". J. Organomet. Chem. 215: 87. doi:10.1016/S0022-328X(00)84619-7.
  5. Murahashi, Shun-Ichi. "Ruthenium in Organic Synthesis" (2006) Wiley-VCH: Weinheim. ISBN 978-3-527-30692-3
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.