Cantitruncated tesseractic honeycomb
In four-dimensional Euclidean geometry, the cantitruncated tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.
Cantitruncated tesseractic honeycomb | |
---|---|
(No image) | |
Type | Uniform 4-honeycomb |
Schläfli symbol | tr{4,3,3,4} tr{4,3,31,1} |
Coxeter-Dynkin diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4-face type | t0,1,2{4,3,3} ![]() t0,1{3,3,4} ![]() {3,4}×{} ![]() |
Cell type | Truncated cuboctahedron ![]() Octahedron ![]() Truncated tetrahedron ![]() Triangular prism ![]() |
Face type | {3}, {4}, {6} |
Vertex figure | Square double pyramid |
Coxeter group | = [4,3,3,4] = [4,3,31,1] |
Dual | |
Properties | vertex-transitive |
Related honeycombs
The [4,3,3,4],
C4 honeycombs | |||
---|---|---|---|
Extended symmetry |
Extended diagram |
Order | Honeycombs |
[4,3,3,4]: | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
×1 | |
[[4,3,3,4]] | ![]() ![]() ![]() ![]() ![]() |
×2 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
[(3,3)[1+,4,3,3,4,1+]] ↔ [(3,3)[31,1,1,1]] ↔ [3,4,3,3] |
![]() ![]() ![]() ![]() ![]() ↔ ![]() ![]() ![]() ![]() ![]() ↔ ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
×6 |
The [4,3,31,1],
B4 honeycombs | ||||
---|---|---|---|---|
Extended symmetry |
Extended diagram |
Order | Honeycombs | |
[4,3,31,1]: | ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
×1 | ||
<[4,3,31,1]>: ↔[4,3,3,4] |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ↔ ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
×2 | ||
[3[1+,4,3,31,1]] ↔ [3[3,31,1,1]] ↔ [3,3,4,3] |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ↔ ![]() ![]() ![]() ![]() ![]() ![]() ↔ ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
×3 | ||
[(3,3)[1+,4,3,31,1]] ↔ [(3,3)[31,1,1,1]] ↔ [3,4,3,3] |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ↔ ![]() ![]() ![]() ![]() ![]() ↔ ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
×12 |
See also
Regular and uniform honeycombs in 4-space:
- Tesseractic honeycomb
- Demitesseractic honeycomb
- 24-cell honeycomb
- Truncated 24-cell honeycomb
- Snub 24-cell honeycomb
- 5-cell honeycomb
- Truncated 5-cell honeycomb
- Omnitruncated 5-cell honeycomb
Notes
References
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
- Klitzing, Richard. "4D Euclidean tesselations#4D". o3x3o *b3x4x, x4x3x3o4o - grittit - O94
- Conway JH, Sloane NJH (1998). Sphere Packings, Lattices and Groups (3rd ed.). ISBN 0-387-98585-9.
Fundamental convex regular and uniform honeycombs in dimensions 2-9 | ||||||
---|---|---|---|---|---|---|
Space | Family | / / | ||||
E2 | Uniform tiling | {3[3]} | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | {3[4]} | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | {3[5]} | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | {3[6]} | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | {3[7]} | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | {3[8]} | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | {3[9]} | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | {3[10]} | δ10 | hδ10 | qδ10 | |
En-1 | Uniform (n-1)-honeycomb | {3[n]} | δn | hδn | qδn | 1k2 • 2k1 • k21 |