Borromean nucleus

A Borromean nucleus is an atomic nucleus comprising three bound components in which any subsystem of two components is unbound.[1] This has the consequence that if one component is removed, the remaining two comprise an unbound resonance, so that the original nucleus is split into three parts.[2]

The name is derived from the Borromean rings, a system of three linked rings in which no pair of rings is linked.[2]

Examples of Borromean nuclei

Many Borromean nuclei are light nuclei near the nuclear drip lines that have a nuclear halo and low nuclear binding energy. For example, the nuclei 6
He
, 11
Li
, and 22
C
each possess a two-neutron halo surrounding a core containing the remaining nucleons.[2][3] These are Borromean nuclei because the removal of either neutron from the halo will result in a resonance unbound to one-neutron emission, whereas the dineutron (the particles in the halo) is itself an unbound system.[1] Similarly, 17
Ne
is a Borromean nucleus with a two-proton halo; both the diproton and 16
F
are unbound.[4]

Additionally, 9
Be
is a Borromean nucleus comprising two alpha particles and a neutron;[3] the removal of any one component would produce one of the unbound resonances 5
He
, 5
Li
, or 8
Be
.

Several Borromean nuclei such as 9
Be
and the Hoyle state (an excited resonance in 12
C
) play an important role in nuclear astrophysics. Namely, these are three-body systems whose unbound components (formed from 4
He
) are intermediate steps in the triple-alpha process; this limits the rate of production of heavier elements, for three bodies must react nearly simultaneously.[3]

Borromean nuclei consisting of more than three components can also exist. These also lie along the drip lines; for instance, 8
He
is a five-body Borromean system with a four-neutron halo.[5] It is also possible that nuclides produced in the alpha process (such as 12
C
and 16
O
) may be clusters of alpha particles, having a similar structure to Borromean nuclei.[2]

As of 2012, the heaviest known Borromean nucleus is 29
F
.[6] Heavier species along the neutron drip line have since been observed; these and undiscovered heavier nuclei along the drip line are also likely to be Borromean nuclei with varying numbers (3, 5, 7, or more) of bodies.[5]

gollark: Great*!
gollark: It is almost certainly better than the entirely ææaaaaæææææææaaaæææ result I have.
gollark: What's your resistivity like *now*?
gollark: Well, it's almost consistent with it being off by a factor of 100 somehow but why?
gollark: Your area is entirely the wrong magnitude.

References

  1. Id Betan, R. M. (2017). "Cooper pairs in the Borromean nuclei 6He and 11Li using continuum single particle level density". Nuclear Physics A. 959: 147–148. arXiv:1701.08099. Bibcode:2017NuPhA.959..147I. doi:10.1016/j.nuclphysa.2017.01.004.
  2. Manton, N.; Mee, N. (2017). "Nuclear Physics". The Physical World: An Inspirational Tour of Fundamental Physics. Oxford University Press. pp. 387–389. doi:10.1093/oso/9780198795933.003.0012. ISBN 978-0-19-879611-4. LCCN 2017934959.
  3. Vaagen, J. S.; Gridnev, D. K.; Heiberg-Andersen, H.; et al. (2000). "Borromean Halo Nuclei" (PDF). Physica Scripta. T88 (1): 209–213. Bibcode:2000PhST...88..209V. doi:10.1238/Physica.Topical.088a00209.
  4. Oishi, T.; Hagino, K.; Sagawa, H. (2010). "Diproton correlation in the proton-rich Borromean nucleus 17Ne". Physical Review C. 82 (6): 066901–1–066901–6. arXiv:1007.0835. doi:10.1103/PhysRevC.82.069901.
  5. Riisager, K. (2013). "Halos and related structures". Physica Scripta. 2013 (14001): 014001. arXiv:1208.6415. Bibcode:2013PhST..152a4001R. doi:10.1088/0031-8949/2013/T152/014001.
  6. Gaudefroy, L.; Mittig, W.; Orr, N. A.; et al. (2012). "Direct Mass Measurements of 19B, 22C, 29F, 31Ne, 34Na and Other Light Exotic Nuclei". Physical Review Letters. 109 (20): 202503–1–202503–5. arXiv:1211.3235. doi:10.1103/PhysRevLett.109.202503. PMID 23215476.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.