Vanadium hexacarbonyl

Vanadium hexacarbonyl is the inorganic compound with the formula V(CO)6. It is a blue-black volatile solid. This highly reactive species is noteworthy from theoretical perspectives as a rare isolable homoleptic metal carbonyl that is paramagnetic. Most species with the formula Mx(CO)y follow the 18-electron rule, whereas V(CO)6 has 17 valence electrons.[1]

Vanadium hexacarbonyl
Names
IUPAC name
hexacarbonylvanadium(0)
Identifiers
3D model (JSmol)
ChEBI
ECHA InfoCard 100.039.928
UNII
Properties
C6O6V
Molar mass 219.00 g/mol
Appearance blue-green crystals
yellow solutions
Density 1.7 g/cm3
Melting point decomposes
Boiling point sublimes at 50 °C (122 °F; 323 K) (15 mmHg)
insoluble
Solubility in other solvents 5 g/L hexane;
more soluble in dichloromethane
Structure
orthorhombic
octahedral
0 D
Hazards
Main hazards CO source
Related compounds
Related compounds
Cr(CO)6, VCl3
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)
Infobox references

Synthesis

Traditionally V(CO)6 is prepared in two-steps via the intermediacy of V(CO)
6
. In the first step, VCl3 is reduced with metallic sodium under 200 atm CO at 160 °C. The solvent for this reduction is typically diglyme, CH3OCH2CH2OCH2CH2OCH3. This triether solubilizes sodium salts, akin to the behavior of a crown ether:

4 Na + VCl3 + 6 CO + 2 diglyme → [Na(diglyme)2][V(CO)6] + 3 NaCl

The resulting anion is oxidized with acid:[2]

2 V(CO)
6
+ 2 H3PO4 → 2 V(CO)6 + H2 + 2 H
2
PO
4

Reactions

Vanadium hexacarbonyl is thermally unstable. Its primary reaction is reduction to the monoanion V(CO)
6
, salts of which are well studied. It is also susceptible to substitution by tertiary phosphine ligands, often leading to disproportionation.

V(CO)6 reacts with sources of the cyclopentadienyl anion to give the orange four-legged piano stool complex (C5H5)V(CO)4 (m.p. 136 °C). Like many charge-neutral organometallic compounds, this half-sandwich species is volatile. In the original preparation of this species, C5H5HgCl was employed as the source of C
5
H
5
.

Structure

V(CO)6 adopts an octahedral coordination geometry and is isostructural with chromium hexacarbonyl, even though they have differing valence electron counts. High resolution X-ray crystallography indicates that the molecule is slightly distorted with two (axial) shorter V–C distances of 1.993(2) Å vs. four (equatorial) 2.005(2) Å. Even though V(−I) is a larger ion than V(0), the V–C distances in V(CO)
6
are 0.07 Å shorter than in the neutral precursor.[3]

gollark: I mean, yes, FTL is equivalent to time travel, but I didn't mention that.
gollark: What does a warp drive have to do with this?
gollark: Like I said, if you could reliably get future information/transmit information backward in time, that would be ridiculously powerful.
gollark: Wait, presupposes that *god* can do that (which is required if said god is omnipotent), or that *people* can get future information?
gollark: Oh, and if you can get answers on yes/no questions about the future that also allows you to transmit information backward through time, obviously.

References

  1. Elschenbroich, C.; Salzer, A. (1992). Organometallics: A Concise Introduction (2nd ed.). Weinheim: Wiley-VCH. ISBN 3-527-28165-7.
  2. Liu, X.; Ellis, J. E. (2004). "Hexacarbonylvanadate(1−) and Hexacarbonylvanadium(0)". Inorg. Synth. 34: 96–103. doi:10.1002/0471653683.ch3. ISBN 0-471-64750-0.
  3. Bellard, S.; Rubinson, K. A.; Sheldrick, G. M. (1979). "Crystal and Molecular Structure of Vanadium Hexacarbonyl". Acta Crystallographica. B35: 271–274. doi:10.1107/S0567740879003332.

Further reading

  • Original synthesis: Ercoli, R.; Calderazzo, F.; Alberola, A. (1960). "Synthesis of Vanadium Hexacarbonyl". J. Am. Chem. Soc. 81: 2966–2967. doi:10.1021/ja01496a073.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.