Tripodal ligand

Tripodal ligands are tri- and tetradentate ligands with C3 symmetry. They are popular in research in the areas of coordination chemistry and homogeneous catalysis. Because the ligands are polydentate, they do not readily dissociate from the metal centre.

Motifs for complexation of tri- and tetradentate tripodal ligands

Coordination chemistry

When used in coordination complexes with an octahedral molecular geometry the tridentate tripod ligands occupy one face, leading to a fixed facial (or fac) geometry. The tetradentate tripodal ligands occupy four contiguous sites, leaving two cis positions available on the octahedral metal center. When bound to four- and five-coordinate metal centres, these ligands impose C3 symmetry, which can lead to uncommon ligand field splitting patterns. Tripodal ligands are often able to coordinately saturate metal ions with lower coordination numbers.

One tripodal ligand of commercial significance is nitrilotriacetate, N(CH2CO2)3 because it is cheaply produced and has a high affinity for divalent metal ions. Other tripodal triamine ligands include tren (N(CH2CH2NH2)3) and cis-1,3,5-triaminocyclohexane.[1] Certain triphosphines such as RC(CH2PPh2)3 are also tripodal. Many kinds of donor groups have been incorporated into the arms of tripodal ligands, including amido (R2N),[2] and N-heterocyclic carbenes.

Structure of [Ni(TACH)(H2O)3]2+ (color code: blue = nitrogen, red = oxygen, dark blue = nickel).[3]
gollark: https://pastebin.com/RM13UGFa
gollark: PotatOS is a great\* OS which spreads virally via disks and is somewhat hard to remove.
gollark: TFW some people don't use potatOS and I don't know the meaning of TFW.
gollark: Though they're not *entirely* altruistic, and have banned me from wolf mall and much of switch city (the bits they own) and one road for saying so…
gollark: Yes.

References

  1. Aimee J. Gamble, Jason M. Lynam, Robert J. Thatcher, Paul H. Walton, Adrian C. Whitwood (2013). "cis-1,3,5-Triaminocyclohexane as a Facially Capping Ligand for Ruthenium(II)". Inorg. Chem. 52: 4517–4527. doi:10.1021/ic302819j.CS1 maint: uses authors parameter (link)
  2. Verkade, J. G. (1993). "Atranes: New Examples with Unexpected Properties". Acc. Chem. Res. 26: 483. doi:10.1021/ar00033a005.
  3. Schwarzenbach, Gerold; Bürgi, Hans-Beat; Jensen, William P.; Lawrance, Geoffrey A.; Mønsted, Lene; Sargeson, Alan M. (1983). "Acid Cleavage of Nickel(Ii) Complexes Containing cis,cis-1,3,5-Cyclohexanetriamine (TACH), Crystal Structure of [Ni(tach)(H2O)3](NO3)2, and a Correlation Between the Structure and Reactivity of Nickel-Polyamine Complexes". Inorganic Chemistry. 22 (26): 4029–4038. doi:10.1021/ic00168a042.
  4. Saouma, C. T., Peters, J. C. (2011). "M-E and M=E Complexes of Iron and Cobalt that Emphasize Three-Fold Symmetry (E = O, N, NR)". Coord. Chem. Rev. 255: 920. doi:10.1016/j.ccr.2011.01.009.CS1 maint: multiple names: authors list (link)
  5. Blackman, A. G. (2008). "Tripodal Tetraamine Ligands Containing Three Pyridine Units: the other polypyridyl ligands". Eur. J. Inorg. Chem.: 2633. doi:10.1002/ejic.200800115.
  6. Parkin, G. (2000). "The Bioinorganic Chemistry of Zinc: Synthetic Analogues of Zinc Enzymes that Feature Tripodal Ligands". Chemical Communications: 1971-1985. doi:10.1039/B004816J.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.