Tonks–Girardeau gas

In physics, a Tonks–Girardeau gas is a Bose gas in which the repulsive interactions between bosonic particles confined to one dimension dominate the physics of the system. It is named after physicists Marvin D. Girardeau and Lewi Tonks. Strictly speaking, this is not a Bose–Einstein condensate as it does not demonstrate any of the characteristics, such as off-diagonal long-range order or a unitary two-body correlation function, even in a thermodynamic limit and as such cannot be described by a macroscopically occupied orbital (order parameter) in the Gross–Pitaevskii formulation.

Definition

Consider a row of bosons all confined to a one-dimensional line. They cannot pass each other and therefore cannot exchange places. The resulting motion has been compared to a traffic jam: the motion of each boson would be strongly correlated with that of its two neighbors. This can be thought of as the large-c limit of the delta Bose gas.

Because the particles cannot exchange places, one might expect their behavior to be fermionic, but it turns out that their behavior differs from that of fermions in several important ways: the particles can all occupy the same momentum state which corresponds to neither Bose-Einstein nor Fermi–Dirac statistics. This is the phenomenon of bosonization which happens in 1+1 dimensions.

In the case of a Tonks–Girardeau gas (TG), so many properties of this one-dimensional string of bosons would be sufficiently fermion-like that the situation is often referred to as the 'fermionization' of bosons. Tonks–Girardeau gas coincides with quantum Nonlinear Schrödinger equation for infinite repulsion, which can be efficiently analyzed by Quantum inverse scattering method. This relation help to study Correlation function (statistical mechanics). The correlation functions can be described by Integrable system. In a simple case, it is Painlevé transcendents. A textbook[1] explains in detail the description of quantum correlation functions of Tonks–Girardeau gas by means of classical completely integrable differential equations. Thermodynamics of Tonks–Girardeau gas was described by Chen Ning Yang.

Realizing a TG gas

There were no known examples of TGs until 2004 when Paredes and coworkers presented a technique of creating an array of such gases using an optical lattice.[2] In a different experiment, Kinoshita and coworkers also succeeded in observation of a strongly correlated 1D Tonks–Girardeau gas.[3]

The optical lattice is formed by six intersecting laser beams, which generate an interference pattern. The beams are arranged as standing waves along three orthogonal directions. This results in an array of optical dipole traps where atoms are stored in the intensity maxima of the interference pattern.

The researchers first loaded ultracold rubidium atoms into one-dimensional tubes formed by a two-dimensional lattice (the third standing wave is off for the moment). This lattice is very strong so that the atoms do not have enough energy to tunnel between neighboring tubes. On the other hand, the interaction is still too low for the transition to the TG regime. For that, the third axis of the lattice is used. It is set to a lower intensity and shorter time than the other two axes, so that tunneling in this direction stays possible. For increasing intensity of the third lattice, atoms in the same lattice well are more and more tightly trapped, which increases the collisional energy. When the collisional energy becomes much bigger than the tunneling energy, the atoms can still tunnel into empty lattice wells, but not into or across occupied ones.

This technique has been used by many other researchers to obtain an array of one-dimensional Bose gases in the Tonks-Girardeau regime. However, the fact that an array of gases is observed only allows the measurement of averaged quantities. Moreover, there is a dispersion of temperatures and chemical potential between the different tubes which wash out many effects. For instance, this configuration does not allow probing of fluctuations in the system. Thus it proved interesting to produce a single Tonks–Girardeau gas. In 2011 one team[4] managed to create a single one-dimensional Bose gas in this very peculiar regime by trapping rubidium atoms magnetically in the vicinity of a microstructure. Thibaut Jacqmin et al managed to measure density fluctuations in such a single strongly interacting gas. Those fluctuations proved to be sub-Poissonian, as expected for a Fermi gas.

gollark: As you can see, GTech™ apiaristic influence is spreading through the noösphere.
gollark: Optical Windows can be optically polished and incorporate an element for diffusing light source to control illumination. AR coatings can be applied to ensure maximum transmission performance for a particular wavelength. The windows are made in a range of materials including UV Fused Silica, Quartz, IR Crystals and optical glasses.
gollark: UQG Optics best-sellers such as Germanium Windows are available coated and uncoated in a variety of diameters and thicknesses.
gollark: What can I do with such germanium windows?
gollark: Take to do what?

See also

References

  1. V.E. Korepin, N.M. Bogoliubov and A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, 1993
  2. Paredes, Belén; Widera, Artur; Murg, Valentin; Mandel, Olaf; Fölling, Simon; Cirac, Ignacio; Shlyapnikov, Gora V.; Hänsch, Theodor W.; Bloch, Immanuel (2004-05-20). "Tonks–Girardeau gas of ultracold atoms in an optical lattice". Nature. 429 (6989): 277–281. Bibcode:2004Natur.429..277P. doi:10.1038/nature02530. ISSN 0028-0836. PMID 15152247.
  3. Weiss, David S.; Wenger, Trevor; Kinoshita, Toshiya (2004-08-20). "Observation of a One-Dimensional Tonks-Girardeau Gas". Science. 305 (5687): 1125–1128. Bibcode:2004Sci...305.1125K. doi:10.1126/science.1100700. ISSN 1095-9203. PMID 15284454.
  4. Jacqmin, Thibaut; Armijo, Julien; Berrada, Tarik; Kheruntsyan, Karen V.; Bouchoule, Isabelle (2011-06-10). "Sub-Poissonian Fluctuations in a 1D Bose Gas: From the Quantum Quasicondensate to the Strongly Interacting Regime". Physical Review Letters. 106 (23): 230405. arXiv:1103.3028. Bibcode:2011PhRvL.106w0405J. doi:10.1103/PhysRevLett.106.230405. PMID 21770488.
  • Tonks, Lewi (1936). "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres". Phys. Rev. 50 (10): 955–963. doi:10.1103/PhysRev.50.955.
  • Girardeau, M (1960). "Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension". Journal of Mathematical Physics. 1 (6): 516. Bibcode:1960JMP.....1..516G. doi:10.1063/1.1703687.
  • Kinoshita, Toshiya; Wenger, Trevor; Weiss, David S (2004). "Observation of a One-Dimensional Tonks-Girardeau Gas". Science. 305 (5687): 1125–1128. Bibcode:2004Sci...305.1125K. doi:10.1126/science.1100700. PMID 15284454.
  • Paredes, Belén; Widera, Artur; Murg, Valentin; Mandel, Olaf; Fölling, Simon; Cirac, Ignacio; Shlyapnikov, Gora V; Hänsch, Theodor W; Bloch, Immanuel (2004). "Tonks–Girardeau gas of ultracold atoms in an optical lattice". Nature. 429 (6989): 277–281. Bibcode:2004Natur.429..277P. doi:10.1038/nature02530. PMID 15152247.
  • Girardeau, M. D; Wright, E. M; Triscari, J. M; Kheruntsyan, Karen; Bouchoule, Isabelle (2001). "Ground-state properties of a one-dimensional system of hard-core bosons in a harmonic trap". Physical Review A. 63 (3): 033601. arXiv:cond-mat/0008480. Bibcode:2001PhRvA..63c3601G. doi:10.1103/PhysRevA.63.033601.
  • Jacqmin, T; Armijo, J; Berrada, T; Kheruntsyan, KV; Bouchoule, I (2011). "Sub-Poissonian fluctuations in a 1D Bose gas: from the quantum quasicondensate to the strongly interacting regime". Phys Rev Lett. 106 (23): 230405. arXiv:1103.3028. Bibcode:2011PhRvL.106w0405J. doi:10.1103/PhysRevLett.106.230405. PMID 21770488.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.