Tau Sagittarii

Tau Sagittarii (Tau Sgr, τ Sagittarii, τ Sgr) is a star in the southern zodiac constellation of Sagittarius.

τ Sagittarii
Location of τ Sagittarii (circled)
Observation data
Epoch J2000.0      Equinox J2000.0
Constellation Sagittarius
Right ascension  19h 06m 56.40897s[1]
Declination –27° 40 13.5189[1]
Apparent magnitude (V) +3.326[2]
Characteristics
Spectral type K1 III[3]
U−B color index +1.185[2]
B−V color index +1.170[2]
Astrometry
Radial velocity (Rv)+45.4[4] km/s
Proper motion (μ) RA: –50.61[1] mas/yr
Dec.: -249.80[1] mas/yr
Parallax (π)26.82 ± 0.86[1] mas
Distance122 ± 4 ly
(37 ± 1 pc)
Absolute magnitude (MV)0.48[5]
Details[6]
Mass1.25 M
Radius15.71 R
Luminosity87.6 L
Surface gravity (log g)2.15 cgs
Temperature4,459 K
Metallicity [Fe/H]–0.27 dex
Rotational velocity (v sin i)1.04[7] km/s
Age7.91 Gyr
Other designations
Namalsadirah 2, Rabi al Sadira, τ Sagittarii, τ Sgr, Tau Sgr, 40 Sagittarii, CPD−27°6617, FK5 1496, GC 26291, HD 177716, HIP 93864, HR 7234, PPM 269078, SAO 187683
Database references
SIMBADdata

Description

With an apparent visual magnitude of +3.3,[2] this is one of the brighter members of the constellation. The distance of this star from Earth is roughly 122 light-years (37 parsecs), based upon parallax measurements.[1]

This is a spectral type K1 giant star with about 1.25 M. The stellar envelope is slightly cooler than the Sun with an effective temperature of 4,459 K, giving the star a light orange color. The interferometry-measured angular diameter of this star, after correcting for limb darkening, is 3.93 ± 0.04 mas,[8] which, at its estimated distance, equates to a physical radius of about 16 times the radius of the Sun.[9]

τ Sagittarii is a suspected double star although no companion has been confirmed yet. A lower metal content (Fe to H ratio is 54% lower than the sun's) and a high peculiar velocity (64 km/s, four times the local average) relative to the Sun suggest the star is a visitor from a different part of the Galaxy.

τ Sagittarii is a red clump giant, a star with similar mass to the sun which has exhausted its core hydrogen, passed through the red giant branch, and started helium fusion in its core.[10]

The Wow! signal

τ Sagittarii is the closest constellational star (a star that is part of the traditional outline of a constellation) to the origin of the 1977 Wow! signal.[11]

Name and etymology

gollark: Be a rebel, eat insects!
gollark: But without spiders, we would have more flies, and flies bad.
gollark: They also ban programming language interpreters and stuff, if I remember right.
gollark: Firefox for android is neat because you can run an adblocker.
gollark: π² = g = 10

References

  1. van Leeuwen, F. (November 2007), "Validation of the new Hipparcos reduction", Astronomy and Astrophysics, 474 (2): 653–664, arXiv:0708.1752, Bibcode:2007A&A...474..653V, doi:10.1051/0004-6361:20078357
  2. Celis S., L. (October 1975), "Photoelectric photometry of late-type variable stars", Astronomy and Astrophysics Supplement Series, 22: 9–17, Bibcode:1975A&AS...22....9C
  3. Gray, R. O.; et al. (July 2006), "Contributions to the Nearby Stars (NStars) Project: spectroscopy of stars earlier than M0 within 40 pc-The Southern Sample", The Astronomical Journal, 132 (1): 161–170, arXiv:astro-ph/0603770, Bibcode:2006AJ....132..161G, doi:10.1086/504637
  4. Wilson, R. E. (1953). General Catalogue of Stellar Radial Velocities. Carnegie Institute of Washington D.C. Bibcode:1953GCRV..C......0W.
  5. Cardini, D. (January 2005), "Mg II chromospheric radiative loss rates in cool active and quiet stars", Astronomy and Astrophysics, 430: 303–311, arXiv:astro-ph/0409683, Bibcode:2005A&A...430..303C, doi:10.1051/0004-6361:20041440.
  6. Reffert, Sabine; et al. (2015). "Precise radial velocities of giant stars. VII. Occurrence rate of giant extrasolar planets as a function of mass and metallicity". Astronomy & Astrophysics. 574: A116. arXiv:1412.4634. Bibcode:2015A&A...574A.116R. doi:10.1051/0004-6361/201322360. hdl:10722/215277.
  7. Hekker, S.; Meléndez, J. (2007). "Precise radial velocities of giant stars. III. Spectroscopic stellar parameters". Astronomy and Astrophysics. 475 (3): 1003. arXiv:0709.1145. Bibcode:2007A&A...475.1003H. doi:10.1051/0004-6361:20078233.
  8. Richichi, A.; et al. (February 2005), "CHARM2: An updated Catalog of High Angular Resolution Measurements", Astronomy and Astrophysics, 431 (2): 773–777, Bibcode:2005A&A...431..773R, doi:10.1051/0004-6361:20042039
  9. Lang, Kenneth R. (2006), Astrophysical formulae, Astronomy and astrophysics library, 1 (3rd ed.), Birkhäuser, ISBN 3-540-29692-1. The radius (R*) is given by:
  10. Alves, David R. (2000). "K-Band Calibration of the Red Clump Luminosity". The Astrophysical Journal. 539 (2): 732. arXiv:astro-ph/0003329. Bibcode:2000ApJ...539..732A. doi:10.1086/309278.
  11. http://www.news.com.au/technology/science/the-worlds-biggest-mysteries-scientists-still-cant-solve/story-fnjwl1aw-1227045377722
  12. "Teapot". constellation-guide.com. Retrieved 2017-05-13.
  13. Allen, R. H. (1963). Star Names: Their Lore and Meaning (Reprint ed.). New York: Dover Publications Inc. p. 355. ISBN 0-486-21079-0. Retrieved 2012-09-04.
  14. Jack W. Rhoads - Technical Memorandum 33-507 - A Reduced Star Catalog Containing 537 Named Stars, Jet Propulsion Laboratory, California Institute of Technology; November 15, 1971
  15. (in Chinese) AEEA (Activities of Exhibition and Education in Astronomy) 天文教育資訊網 2006 年 5 月 11 日
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.