Tang Chao (physicist)

Tang Chao (Chinese: 汤超; born 1958) is a Chair Professor of Physics and Systems Biology at Peking University.

Tang Chao
Born1958 (age 6162)
NationalityChinese
Alma materUniversity of Science and Technology of China
University of Chicago (PhD)
Known forSelf-organized criticality
Bak–Tang–Wiesenfeld sandpile
Scientific career
FieldsPhysics, Biology
InstitutionsPeking University
Doctoral advisorLeo Kadanoff
Chinese name
Traditional Chinese
Simplified Chinese

Education

He had his undergraduate training at the University of Science and Technology of China, then went to the United States through the CUSPEA program organized by Prof. T. D. Lee. He received a Ph.D. degree in Physics from the University of Chicago.

Career

In his early career, he worked on problems in statistical physics, dynamical system and complex systems. In 1987, along with Per Bak and Kurt Wiesenfeld, he proposed the concept and developed the theory for self-organized criticality, which had and continues to have broad applications in complex systems with scale invariance. The model they used to illustrate the idea is referred to as the Bak-Tang-Wiesenfeld "sandpile" model. His current research interest is at the interface between physics and biology. Specifically, he focuses on systems biology and works on problems such as protein folding, cell cycle regulation, function-topology relationship in biological network, cell fate determination and design principles in biological systems. He was a tenured Full Professor at the University of California San Francisco before returning to China in 2011. He is a Fellow of the American Physical Society, the founding director of the interdisciplinary Center for Quantitative Biology at Peking University and the founding Co-Editor-in-Chief of the journal Quantitative Biology.

Selected publications

gollark: Yes, you have complained about how people might not take vulnerability reports seriously, but that is not an excuse to just not make any.
gollark: But deliberately hoarding vulnerabilities is an active threat to the security of everything.
gollark: I mean, not releasing your software is... your choice, it's your stuff, I might not really like it but I don't consider it particularly bees.
gollark: !quote 723983650043199568
gollark: If you have useful, popular tools you can probably get PRs for them, and it saves people working in the same field from just implementing their own versions.

References

  1. Bak, P., Tang, C. and Wiesenfeld, K. (1987). "Self-organized criticality: an explanation of 1/f noise". Physical Review Letters. 59 (4): 381–384. Bibcode:1987PhRvL..59..381B. doi:10.1103/PhysRevLett.59.381. PMID 10035754.CS1 maint: multiple names: authors list (link)
  2. Bak, P., Tang, C. and Wiesenfeld, K. (1988). "Self-organized criticality". Physical Review A. 38 (1): 364–374. Bibcode:1988PhRvA..38..364B. doi:10.1103/PhysRevA.38.364. PMID 9900174.CS1 maint: multiple names: authors list (link)
  3. Li, H., Helling, R., Tang, C. and Wingreen, N. (1996). "Emergence of Preferred Structures in a Simple Model of Protein Folding". Science. 273 (5275): 666–669. arXiv:cond-mat/9603016. Bibcode:1996Sci...273..666L. doi:10.1126/science.273.5275.666.CS1 maint: multiple names: authors list (link)
  4. Li, F., Long, T., Lu, Y., Ouyang, Q. and Tang, C. (2004). "The yeast cell-cycle network is robustly designed". Proceedings of the National Academy of Sciences. 101 (14): 4781–4786. arXiv:q-bio/0310010. Bibcode:2004PNAS..101.4781L. doi:10.1073/pnas.0305937101.CS1 maint: multiple names: authors list (link)
  5. Ma, W., Trusina, A., El-Samad, H. Lim, W. and Tang, C. (2009). "Defining Network Topologies that Can Achieve Biochemical Adaptation". Cell. 138 (4): 760–773. doi:10.1016/j.cell.2009.06.013. PMC 3068210. PMID 19703401.CS1 maint: multiple names: authors list (link)
  6. Shu, J.; et al. (2013). "Induction of Pluripotency in Mouse Somatic Cells with Lineage Specifiers". Cell. 153 (5): 963–975. doi:10.1016/j.cell.2013.05.001. PMC 4640445. PMID 23706735.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.