Stack effect

Stack effect or chimney effect is the movement of air into and out of buildings, chimneys, flue-gas stacks, or other containers, resulting from air buoyancy. Buoyancy occurs due to a difference in indoor-to-outdoor air density resulting from temperature and moisture differences. The result is either a positive or negative buoyancy force. The greater the thermal difference and the height of the structure, the greater the buoyancy force, and thus the stack effect. The stack effect helps drive natural ventilation, air infiltration, and fires (e.g. the Kaprun tunnel fire and King's Cross underground station fire).

Stack effect in buildings

Since buildings are not totally sealed (at the very minimum, there is always a ground level entrance), the stack effect will cause air infiltration. During the heating season, the warmer indoor air rises up through the building and escapes at the top either through open windows, ventilation openings, or unintentional holes in ceilings, like ceiling fans and recessed lights. The rising warm air reduces the pressure in the base of the building, drawing cold air in through either open doors, windows, or other openings and leakage. During the cooling season, the stack effect is reversed, but is typically weaker due to lower temperature differences.[1]

In a modern high-rise building with a well-sealed envelope, the stack effect can create significant pressure differences that must be given design consideration and may need to be addressed with mechanical ventilation. Stairwells, shafts, elevators, and the like, tend to contribute to the stack effect, while interior partitions, floors, and fire separations can mitigate it. Especially in case of fire, the stack effect needs to be controlled to prevent the spread of smoke and fire, and to maintain tenable conditions for occupants and firefighters.[2] While natural ventilation methods may be effective, such as air outlets being installed closer to the ground, mechanical ventilation is often preferred for taller structures or in buildings with limited space. Smoke extraction is a key consideration in new constructions and must be evaluated in design stages.[3]

The Grenfell Tower fire, as a result of which 71 people died,[4] was in part exacerbated by the stack effect. A cavity between the outer aluminium cladding and the inner insulation formed a chimney and drew the fire upwards.[5][6]

Stack effect in flue gas stacks and chimneys

The stack effect in chimneys: the gauges represent absolute air pressure and the airflow is indicated with light grey arrows. The gauge dials move clockwise with increasing pressure.

The stack effect in industrial flue gas stacks is similar to that in buildings, except that it involves hot flue gases having large temperature differences with the ambient outside air. Furthermore, an industrial flue gas stack typically provides little obstruction for the flue gas along its length and is, in fact, normally optimized to enhance the stack effect to reduce fan energy requirements.

Large temperature differences between the outside air and the flue gases can create a strong stack effect in chimneys for buildings using a fireplace for heating.

Before the development of large volume fans, mines were ventilated using the stack effect. A downcast shaft allowed air into the mine. At the foot of the upcast shaft a furnace was kept continuously burning. The shaft (commonly several hundred yards deep) behaved like a chimney and air rose through it drawing fresh air down the downcast stack and around the mine.

Cause for the stack effect

There is a pressure difference between the outside air and the air inside the building caused by the difference in temperature between the outside air and the inside air. That pressure difference ( ΔP ) is the driving force for the stack effect and it can be calculated with the equations presented below.[7][8] The equations apply only to buildings where air is both inside and outside the buildings. For buildings with one or two floors, h is the height of the building. For multi-floor, high-rise buildings, h is the distance from the openings at the neutral pressure level (NPL) of the building to either the topmost openings or the lowest openings. Reference[7] explains how the NPL affects the stack effect in high-rise buildings.

For flue gas stacks and chimneys, where air is on the outside and combustion flue gases are on the inside, the equations will only provide an approximation and h is the height of the flue gas stack or chimney.

SI units:
where:  
ΔP = available pressure difference, in Pa
C = 0.0342, in K/m
a = atmospheric pressure, in Pa
h = height or distance, in m
To = absolute outside temperature, in K
Ti = absolute inside temperature, in K
U.S. customary units:
where:  
ΔP = available pressure difference, in psi
C = 0.0188, in °R/ft
a = atmospheric pressure, in psi
h = height or distance, in ft
To = absolute outside temperature, in °R
Ti = absolute inside temperature, in °R

Induced flow

The draft (draught in British English) flow rate induced by the stack effect can be calculated with the equation presented below.[9][10] The equation applies only to buildings where air is both inside and outside the buildings. For buildings with one or two floors, h is the height of the building and A is the flow area of the openings. For multi-floor, high-rise buildings, A is the flow area of the openings and h is the distance from the openings at the neutral pressure level (NPL) of the building to either the topmost openings or the lowest openings. Reference[7] explains how the NPL affects the stack effect in high-rise buildings.

For flue gas stacks or chimneys, where air is on the outside and combustion flue gases are on the inside, the equation will only provide an approximation. Also, A is the cross-sectional flow area and h is the height of the flue gas stack or chimney.

SI units:
where:  
Q = stack effect draft (draught in British English) flow rate, m3/s
A = flow area, m2
C = discharge coefficient (usually taken to be from 0.65 to 0.70)
g = gravitational acceleration, 9.81 m/s2
h = height or distance, m
Ti = average inside temperature, K
To = outside air temperature, K
U.S. customary units:
where:  
Q = stack effect draft flow rate, ft3/s
A = area, ft2
C = discharge coefficient (usually taken to be from 0.65 to 0.70)
g = gravitational acceleration, 32.17 ft/s2
h = height or distance, ft
Ti = average inside temperature, °R
To = outside air temperature, °R

This equation assumes that the resistance to the draft flow is similar to the resistance of flow through an orifice characterized by a discharge coefficient C.

gollark: I'm reading through the backlogs here.
gollark: It's possible to brute-force encryption in theory, but modern crypto makes this very impractical to do given constraints like the available size of the universe and stuff.
gollark: <@!692654568827387986> I'm pretty sure you're wrong about encryption here. You can't just magically decrypt stuff without the key. Encrypted data you don't have the key for is indistinguishable from random noise.
gollark: It still has calls to Google stuff in it, they're just visibly there.
gollark: Not really.

See also

References

  1. www.mdpi.com/2071-1050/9/10/1731/pdf Resolving Stack Effect Problems in a High-Rise Office Building by Mechanical Pressurization | date=2017-09| access-date=2020-08-01 | Jung-yeon Yu; Kyoo-dong Song; and Dong-woo Cho
  2. NIST Technical Note 1618, Daniel Madrzykowski and Stephen Kerber, National Institute of Standards and Technology
  3. "Smoke Simulation: Heat and Smoke Extraction for Building Design". SimScale. 2019-04-23. Retrieved 2019-07-04.
  4. "Grenfell Tower final death toll: police say 71 lives lost as result of fire". The Guardian. 16 November 2017. Retrieved 16 November 2017.
  5. "Met Police Statement. Update: Grenfell Tower fire investigation". MPS. MPS. 6 July 2017. Retrieved 6 July 2017.
  6. Griffin, Andrew (14 June 2017). "The fatal mistake made in the Grenfell Tower fire". The Independent. Archived from the original on 14 June 2017. Retrieved 16 June 2017.
  7. Magyar, Zoltán. "Natural Ventilation Lecture 2" (PDF). Archived from the original (PDF) on 12 February 2020. Retrieved 12 February 2020.
  8. "Educational Package Ventilation - Lecture 3 : Mechanical (forced) ventilation" (PDF). www.energiazero.org. IDES_EDU / Intelligent Energy Europe. 28 October 2011. Retrieved 4 October 2019.
  9. Andy Walker (2 August 2016). "Natural Ventilation". WBDG - Whole Building Design Guide. National Institute of Building Sciences. Retrieved 1 April 2020.
  10. Steve Irving; Brian Ford; David Etheridge (2010). AM10 Natural ventilation in non-domestic buildings. CIBSE. ISBN 9781903287569.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.