Sphere packing in a sphere

Sphere packing in a sphere is a three-dimensional packing problem with the objective of packing a given number of equal spheres inside a unit sphere. It is the three-dimensional equivalent of the circle packing in a circle problem in two dimensions.

Number of
inner spheres
Maximum radius of inner spheres[1] Packing
density
Optimality Diagram
Exact form Approximate
1 1.0000 1 Trivially optimal.
2 0.5000 0.25 Trivially optimal.
3 0.4641... 0.29988... Trivially optimal.
4 0.4494... 0.36326... Proven optimal.
5 0.4142... 0.35533... Proven optimal.
6 0.4142... 0.42640... Proven optimal.
7 0.3859... 0.40231... Proven optimal.
8 0.3780... 0.43217... Proven optimal.
9 0.3660... 0.44134... Proven optimal.
10 0.3530... 0.44005... Proven optimal.
11 0.3445... 0.45003... Proven optimal.
12 0.3445... 0.49095... Proven optimal.

References

  1. Pfoertner, Hugo (2008-02-02). "Densest Packings of n Equal Spheres in a Sphere of Radius 1. Largest Possible Radii". Archived from the original on 2012-03-30. Retrieved 2013-11-02.
  • Huang, WenQi; Yu, Liang (2012). "Serial Symmetrical Relocation Algorithm for the Equal Sphere Packing Problem". arXiv:1202.4149.
  • Gensane, T. (2003). "Dense packings of equal spheres in a larger sphere". Les Cahiers du LMPA J. Liouville. 188.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.