Short-circuit test

The purpose of a short-circuit test is to determine the series branch parameters of the equivalent circuit of a transformer.

Circuit diagram for short-circuit test

Method

The test is conducted on the high-voltage (HV) side of the transformer where the low-voltage (LV) side or the secondary is short circuited. A wattmeter is connected to the primary. An ammeter is connected in series with the primary winding. A voltmeter is optional since the applied voltage is the same as the voltmeter reading. The LV side of the transformer is short circuited. Now with the help of variac applied voltage is slowly increased until the ammeter gives reading equal to the rated current of the HV side. After reaching at rated current of HV side, all three instruments reading (Voltmeter, Ammeter and Watt-meter readings) are recorded. The ammeter reading gives the primary equivalent of full load current IL. As the voltage applied for full load current in short circuit test on transformer is quite small compared to the rated primary voltage of the transformer, the iron losses in transformer can be taken as negligible here.


Calculations

is the full-load copper loss

is the applied voltage

is the rated current

is the resistance as viewed from the primary

is the total impedance as viewed from the primary

is the reactance as viewed from the primary

Fault withstand

A short-circuit test for determination of transformer impedance and losses is carried out with relatively low power applied to the transformer, and with winding currents of the same magnitude as in operation. A different form of short-circuit testing is done to assess the mechanical strength of the transformer windings, and their ability to withstand the high forces produced if an energized transformer experiences a short-circuit fault. Currents during such events can be several times the normal rated current. The resultant forces can distort the windings or break internal connections. For large utility-scale power transformers, high-power test laboratories such as the one operated by Powertech Labs near Vancouver, Canada, KEMA at Arnhem, Holland, and CESI Italy have facilities to apply the very high power levels representative of a fault on an interconnected grid system.

gollark: Even if Discord somehow managed to block selfbots, which I don't think they can do in practice, it would be possible to do something ridiculous like... run Discord in one of those headless browser things, and read out messages and whatnot.
gollark: I think trying to restrict this information from spreading around is... about as effective as DRM, really, for the reason that you can kind of control who gets information but not how it's used or spread out after they do.
gollark: Bots running on a user account instead of a bot one.
gollark: Not technically, they are explicitly.
gollark: Me hacking Discord.

See also

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.