Self-incompatibility
Self-incompatibility (SI) is a general name for several genetic mechanisms in angiosperms, which prevent self-fertilization and thus encourage outcross and allogamy. It should not be confused with genetically controlled physical or temporal mechanisms that prevent self-pollination, such as heterostyly and sequential hermaphroditism (dichogamy).
In plants with SI, when a pollen grain produced in a plant reaches a stigma of the same plant or another plant with a similar genotype, the process of pollen germination, pollen-tube growth, ovule fertilization and embryo development is halted at one of its stages and consequently no seeds are produced. SI is one of the most important means of preventing inbreeding and promoting the generation of new genotypes in plants, and it is considered as one of the causes for the spread and success of angiosperms on the earth.
Mechanisms of single-locus self-incompatibility
The best studied mechanisms of SI act by inhibiting the germination of pollen on stigmas, or the elongation of the pollen tube in the styles. These mechanisms are based on protein-protein interactions, and the best-understood mechanisms are controlled by a single locus termed S, which has many different alleles in the species population. Despite their similar morphological and genetic manifestations, these mechanisms have evolved independently, and are based on different cellular components;[1] therefore, each mechanism has its own, unique S-genes.
The S-locus contains two basic protein coding regions - one expressed in the pistil, and the other in the anther and/or pollen (referred to as the female and male determinants, respectively). Because of their physical proximity, these are genetically linked, and are inherited as a unit. The units are called S-haplotypes. The translation products of the two regions of the S-locus are two proteins which, by interacting with one another, lead to the arrest of pollen germination and/or pollen tube elongation, and thereby generate an SI response, preventing fertilization. However, when a female determinant interacts with a male determinant of a different haplotype, no SI is created, and fertilization ensues. This is a simplistic description of the general mechanism of SI, which is more complicated, and in some species the S-haplotype contains more than two protein coding regions.
Following is a detailed description of the different known mechanisms of SI in plants.
Gametophytic self-incompatibility (GSI)
In gametophytic self-incompatibility (GSI), the SI phenotype of the pollen is determined by its own gametophytic haploid genotype. This is the most common type of SI.[2] Two different mechanisms of GSI have been described in detail at the molecular level, and their description follows.
The RNAase mechanism
The female component of GSI in the Solanaceae was found in 1989.[3] Proteins in the same family were subsequently discovered in the Rosaceae and Plantaginaceae. Despite some early doubts about the common ancestry of GSI in these distantly related families, phylogenetic studies[4] and the finding of shared male determinants (F-box proteins)[5][6][7][8] clearly established homology. Consequently, this mechanism arose approximately 90 million years ago, and is the inferred ancestral state for approximately 50% of all plants.[4][9]
In this mechanism, pollen tube elongation is halted when it has proceeded approximately one third of the way through the style.[10] The female component ribonuclease, termed S-RNase[3] probably causes degradation of the ribosomal RNA (rRNA) inside the pollen tube, in the case of identical male and female S alleles, and consequently pollen tube elongation is arrested, and the pollen grain dies.[10]
The male component was only recently putatively identified as a member of the "F-box" protein family.[8] Despite some fairly convincing evidence that it may be the male component, several features also make it an unlikely candidate.
The S-glycoprotein mechanism
The following mechanism was described in detail in Papaver rhoeas. In this mechanism, pollen growth is inhibited within minutes of its placement on the stigma.[10]
The female determinant is a small, extracellular molecule, expressed in the stigma; the identity of the male determinant remains elusive, but it is probably some cell membrane receptor.[10] The interaction between male and female determinants transmits a cellular signal into the pollen tube, resulting in strong influx of calcium cations; this interferes with the intracellular concentration gradient of calcium ions which exists inside the pollen tube, essential for its elongation.[11][12][13] The influx of calcium ions arrests tube elongation within 1–2 minutes. At this stage, pollen inhibition is still reversible, and elongation can be resumed by applying certain manipulations, resulting in ovule fertilization.[10]
Subsequently, the cytosolic protein p26, a pyrophosphatase, is inhibited by phosphorylation,[14] possibly resulting in arrest of synthesis of molecular building blocks, required for tube elongation. There is depolymerization and reorganization of actin filaments, within the pollen cytoskeleton.[15][16] Within 10 minutes from the placement on the stigma, the pollen is committed to a process which ends in its death. At 3–4 hours past pollination, fragmentation of pollen DNA begins,[17] and finally (at 10–14 hours), the cell dies apoptotically.[10][18]
Sporophytic self-incompatibility (SSI)
In sporophytic self-incompatibility (SSI), the SI phenotype of the pollen is determined by the diploid genotype of the anther (the sporophyte) in which it was created. This form of SI was identified in the families: Brassicaceae, Asteraceae, Convolvulaceae, Betulaceae, Caryophyllaceae, Sterculiaceae and Polemoniaceae.[19] Up to this day, only one mechanism of SSI has been described in detail at the molecular level, in Brassica (Brassicaceae).
Since SSI is determined by a diploid genotype, the pollen and pistil each express the translation products of two different alleles, i.e. two male and two female determinants. Dominance relationships often exist between pairs of alleles, resulting in complicated patterns of compatibility/self-incompatibility. These dominance relationships also allow the generation of individuals homozygous for a recessive S allele.[20]
Compared to a population in which all S alleles are co-dominant, the presence of dominance relationships in the population, raises the chances of compatible mating between individuals.[20] The frequency ratio between recessive and dominant S alleles, reflects a dynamic balance between reproduction assurance (favoured by recessive alleles) and avoidance of selfing (favoured by dominant alleles).[21]
The SI mechanism in Brassica
As previously mentioned, the SI phenotype of the pollen is determined by the diploid genotype of the anther. In Brassica, the pollen coat, derived from the anther's tapetum tissue, carries the translation products of the two S alleles. These are small, cysteine-rich proteins. The male determinant is termed SCR or SP11, and is expressed in the anther tapetum as well as in the microspore and pollen (i.e. sporophytically).[22][23] There are possibly up to 100 polymorphs of the S-haplotype in Brassica, and within these there is a dominance hierarchy.
The female determinant of the SI response in Brassica, is a transmembrane protein termed SRK, which has an intracellular kinase domain, and a variable extracellular domain.[24][25] SRK is expressed in the stigma, and probably functions as a receptor for the SCR/SP11 protein in the pollen coat. Another stigmatic protein, termed SLG, is highly similar in sequence to the SRK protein, and seems to function as a co-receptor for the male determinant, amplifying the SI response.[26]
The interaction between the SRK and SCR/SP11 proteins results in autophosphorylation of the intracellular kinase domain of SRK,[27][28] and a signal is transmitted into the papilla cell of the stigma. Another protein essential for the SI response is MLPK, a serine-threonine kinase, which is anchored to the plasma membrane from its intracellular side.[29] The downstream cellular and molecular events, leading eventually to pollen inhibition, are poorly described.
Other mechanisms of self-incompatibility
These mechanisms have received only limited attention in scientific research. Therefore, they are still poorly understood.
2-locus gametophytic self-incompatibility
The grass subfamily Pooideae, and perhaps all of the family Poaceae, have a gametophytic self-incompatibility system that involves two unlinked loci referred to as S and Z.[30] If the alleles expressed at these two loci in the pollen grain both match the corresponding alleles in the pistil, the pollen grain will be recognized as incompatible.[30]
Heteromorphic self-incompatibility
A distinct SI mechanism exists in heterostylous flowers, termed heteromorphic self-incompatibility. This mechanism is probably not evolutionarily related to the more familiar mechanisms, which are differentially defined as homomorphic self-incompatibility.[31]
Almost all heterostylous taxa feature SI to some extent. The loci responsible for SI in heterostylous flowers, are strongly linked to the loci responsible for flower polymorphism, and these traits are inherited together. Distyly is determined by a single locus, which has two alleles; tristyly is determined by two loci, each with two alleles. Heteromorphic SI is sporophytic, i.e. both alleles in the male plant, determine the SI response in the pollen. SI loci always contain only two alleles in the population, one of which is dominant over the other, in both pollen and pistil. Variance in SI alleles parallels the variance in flower morphs, thus pollen from one morph can fertilize only pistils from the other morph. In tristylous flowers, each flower contains two types of stamens; each stamen produces pollen capable of fertilizing only one flower morph, out of the three existing morphs.[31]
A population of a distylous plant contains only two SI genotypes: ss and Ss. Fertilization is possible only between genotypes; each genotype cannot fertilize itself.[31] This restriction maintains a 1:1 ratio between the two genotypes in the population; genotypes are usually randomly scattered in space.[32][33] Tristylous plants contain, in addition to the S locus, the M locus, also with two alleles.[31] The number of possible genotypes is greater here, but a 1:1 ratio exists between individuals of each SI type.[34]
Cryptic self-incompatibility (CSI)
Cryptic self-incompatibility (CSI) exists in a limited number of taxa (for example, there is evidence for CSI in Silene vulgaris, Caryophyllaceae[35]). In this mechanism, the simultaneous presence of cross and self pollen on the same stigma, results in higher seed set from cross pollen, relative to self pollen.[36] However, as opposed to 'complete' or 'absolute' SI, in CSI, self-pollination without the presence of competing cross pollen, results in successive fertilization and seed set;[36] in this way, reproduction is assured, even in the absence of cross-pollination. CSI acts, at least in some species, at the stage of pollen tube elongation, and leads to faster elongation of cross pollen tubes, relative to self pollen tubes. The cellular and molecular mechanisms of CSI have not been described.
The strength of a CSI response can be defined, as the ratio of crossed to selfed ovules, formed when equal amounts of cross and self pollen, are placed upon the stigma; in the taxa described up to this day, this ratio ranges between 3.2 and 11.5.[37]
Late-acting self-incompatibility (LSI)
Late-acting self-incompatibility (LSI) is also termed ovarian self-incompatibility (OSI). In this mechanism, self pollen germinates and reaches the ovules, but no fruit is set.[38][39] LSI can be pre-zygotic (e.g. deterioration of the embryo sac prior to pollen tube entry, as in Narcissus triandrus[40]) or post-zygotic (malformation of the zygote or embryo, as in certain species of Asclepias and in Spathodea campanulata[41][42][43][44]).
The existence of the LSI mechanism among different taxa and in general, is subject for scientific debate. Criticizers claim, that absence of fruit set is due to genetic defects (homozygosity for lethal recessive alleles), which are the direct result of self-fertilization (inbreeding depression).[45][46][47] Supporters, on the other hand, argue for the existence of several basic criteria, which differentiate certain cases of LSI from the inbreeding depression phenomenon.[38][43]
Self-compatibility (SC)
Approximately one half of angiosperm species are SI,[48] the remainder being self-compatible (SC). Mutations that break down SI (resulting in SC) may become common or entirely dominate in natural populations. Pollinator decline, variability in pollinator service, the so-called "automatic advantage" of self-fertilisation, among other factors, may favor the loss of SI. Similarly, human-mediated artificial selection through selective breeding may be responsible for the commonly observed SC in cultivated plants. SC enables more efficient breeding techniques to be employed for crop improvement.
See also
- Dioecy
- Plant sexuality
- Dimorphous flower
- Pollination
- Heterosis
- Outcrossing
- Allogamy
- Monocotyledon reproduction
References
- Charlesworth, D., X. Vekemans, V. Castric and S. Glemin (2005). "Plant self-incompatibility systems: a molecular evolutionary perspective". New Phytologist. 168 (1): 61–69. doi:10.1111/j.1469-8137.2005.01443.x. PMID 16159321.CS1 maint: multiple names: authors list (link)
- Franklin, F. C. H., M. J. Lawrence, and V. E. Franklin-Tong (1995). Cell and molecular biology of self-incompatibility in flowering plants. Int. Rev. Cytol. International Review of Cytology. 158. pp. 1–64. doi:10.1016/S0074-7696(08)62485-7. ISBN 978-0-12-364561-6.CS1 maint: multiple names: authors list (link)
- McClure, B. A., V. Haring, , P. R. Ebert, M. A. Anderson, R. J. Simpson, F. Sakiyama, and A. E. Clarke (1989). "Style selfincompatibility gene products of Nicotiana alata are ribonucleases". Nature. 342 (6252): 955–7. Bibcode:1989Natur.342..955M. doi:10.1038/342955a0. PMID 2594090.CS1 maint: multiple names: authors list (link)
- Igic, B. & J. R. Kohn (2001). "Evolutionary relationships among self-incompatibility RNases". Proc. Natl. Acad. Sci. U.S.A. 98 (23): 13167–71. doi:10.1073/pnas.231386798. PMC 60842. PMID 11698683.
- Qiao, H., H. Wang, L. Zhao, J. Zhou, J. Huang, Y. Zhang, and Y. Xue (2004). "The F-Box Protein AhSLF-S2 Physically Interacts with S-RNases That May Be Inhibited by the Ubiquitin/26S Proteasome Pathway of Protein Degradation during Compatible Pollination in Antirrhinum". Plant Cell. 16 (3): 582–95. doi:10.1105/tpc.017673. PMC 385274. PMID 14973168.CS1 maint: multiple names: authors list (link)
- Qiao, H., F. Wang, L. Zhao, J. Zhou, Z. Lai, Y. Zhang, T. P. Robbins, and Y. Xue (2004). "The F-Box Protein AhSLF-S2 Controls the Pollen Function of S-RNase–Based Self-Incompatibility". Plant Cell. 16 (9): 2307–22. doi:10.1105/tpc.104.024919. PMC 520935. PMID 15308757.CS1 maint: multiple names: authors list (link)
- Ushijima, K., H. Yamane, A. Watari, E. Kakehi, K. Ikeda, N. R. Hauck, A. F. Iezzoni, and R. Tao (2004). "The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume". Plant J. 39 (4): 573–86. doi:10.1111/j.1365-313X.2004.02154.x. PMID 15272875.CS1 maint: multiple names: authors list (link)
- Sijacic, P., X. Wang, A. L. Skirpan, Y. Wang, P. E. Dowd, A. G. McCubbin, S. Huang, and T. Kao (2004). "Identification of the pollen determinant of S-RNase-mediated self-incompatibility". Nature. 429 (6989): 302–5. Bibcode:2004Natur.429..302S. doi:10.1038/nature02523. PMID 15152253.CS1 maint: multiple names: authors list (link)
- Steinbachs, J. E. & K. E. Holsinger (2002). "S-RNase-mediated gametophytic self-incompatibility is ancestral in eudicots". Mol. Biol. Evol. 19 (6): 825–9. doi:10.1093/oxfordjournals.molbev.a004139. PMID 12032238.
- Franklin-Tong, V. E. & F. C. H. Franklin (2003). "The different mechanisms of gametophytic self-incompatibility". Philosophical Transactions of the Royal Society B. 358 (1434): 1025–32. doi:10.1098/rstb.2003.1287. PMC 1693207. PMID 12831468.
- Franklin-Tong, V. E., J. P. Ride, N. D. Read, A. J. Trewawas, and F. C. H. Franklin (1993). "The self-incompatibility response in Papaver rhoeas is mediated by cytosolic free calcium". Plant J. 4: 163–177. doi:10.1046/j.1365-313X.1993.04010163.x.CS1 maint: multiple names: authors list (link)
- Franklin-Tong, V. E., G. Hackett, and P. K. Hepler (1997). "Ratioimaging of Ca21 in the self-incompatibility response in pollen tubes of Papaver rhoeas". Plant J. 12 (6): 1375–86. doi:10.1046/j.1365-313x.1997.12061375.x.CS1 maint: multiple names: authors list (link)
- Franklin-Tong, V. E., T. L. Holdaway-Clarke, K. R. Straatman, J. G. Kunkel, and P. K. Hepler (2002). "Involvement of extracellular calcium influx in the self-incompatibility response of Papaver rhoeas". Plant J. 29 (3): 333–345. doi:10.1046/j.1365-313X.2002.01219.x. PMID 11844110.CS1 maint: multiple names: authors list (link)
- Rudd, J. J., F. C. H. Franklin, J. M. Lord, and V. E. Franklin-Tong (1996). "Increased Phosphorylation of a 26-kD Pollen Protein Is Induced by the Self-Incompatibility Response in Papaver rhoeas". Plant Cell. 8 (4): 713–724. doi:10.1105/tpc.8.4.713. PMC 161131. PMID 12239397.CS1 maint: multiple names: authors list (link)
- Geitmann, A., B. N. Snowman, , A. M. C. Emons, and V. E. Franklin-Tong (2000). "Alterations to the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver rhoeas". Plant Cell. 12 (7): 1239–52. doi:10.1105/tpc.12.7.1239. PMC 149062. PMID 10899987.CS1 maint: multiple names: authors list (link)
- Snowman, B. N., D. R. Kovar, G. Shevchenko, V. E. Franklin-Tong, and C. J. Staiger (2002). "Signal-Mediated Depolymerization of Actin in Pollen during the Self-Incompatibility Response". Plant Cell. 14 (10): 2613–26. doi:10.1105/tpc.002998. PMC 151239. PMID 12368508.CS1 maint: multiple names: authors list (link)
- Jordan, N. D., F. C. H. Franklin, and V. E. Franklin-Tong (2000). "Evidence for DNA fragmentation triggered in the selfincompatibility response in pollen of Papaver rhoeas". Plant J. 23 (4): 471–9. doi:10.1046/j.1365-313x.2000.00811.x. PMID 10972873.CS1 maint: multiple names: authors list (link)
- Thomas, S. G. & V. E. Franklin-Tong (2004). "Self-incompatibility triggers programmed cell death in Papaver pollen". Nature. 429 (6989): 305–9. Bibcode:2004Natur.429..305T. doi:10.1038/nature02540. PMID 15152254.
- Goodwillie, C. (1997). "The genetic control of self-incompatibility in Linanthus parviflorus (Polemoniaceae)". Heredity. 79 (4): 424–432. doi:10.1038/hdy.1997.177.
- Hiscock, S. J. & D. A. Tabah (2003). "The different mechanisms of sporophytic self-incompatibility". Philosophical Transactions of the Royal Society B. 358 (1434): 1037–45. doi:10.1098/rstb.2003.1297. PMC 1693206. PMID 12831470.
- Ockendon, D. J. (1974). "Distribution of self-incompatibility alleles and breeding structure of open-pollinated cultivars of Brussels sprouts". Heredity. 32 (2): 159–171. doi:10.1038/hdy.1974.84.
- Schopfer, C. R., M. E. Nasrallah, and J. B. Nasrallah (1999). "The male determinant of self-incompatibility in Brassica". Science. 286 (5445): 1697–1700. doi:10.1126/science.286.5445.1697. PMID 10576728.CS1 maint: multiple names: authors list (link)
- Takayama, S., H. Shiba, M. Iwano, H. Shimosato, F.-S. Che, N. Kai, M. Watanabe, G. Suzuki, K. Hinata, and A. Isogai (2000). "The pollen determinant of self-incompatibility in Brassica campestris". Proc. Natl. Acad. Sci. U.S.A. 97 (4): 1920–5. Bibcode:2000PNAS...97.1920T. doi:10.1073/pnas.040556397. PMC 26537. PMID 10677556.CS1 maint: multiple names: authors list (link)
- Stein, J. C., B. Howlett, D. C. Boyes, M. E. Nasrallah, and J. B. Nasrallah (1991). "Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea". Proc. Natl. Acad. Sci. U.S.A. 88 (19): 8816–20. Bibcode:1991PNAS...88.8816S. doi:10.1073/pnas.88.19.8816. PMC 52601. PMID 1681543.CS1 maint: multiple names: authors list (link): .
- Nasrallah, J. B. & M. E. Nasrallah (1993). "Pollen–stigma signalling in the sporophytic self-incompatibility response". Pl. Cell. 5 (10): 1325–35. doi:10.2307/3869785. JSTOR 3869785.
- Takasaki, T., K. Hatakeyama, G. Suzuki, M. Watanabe, A. Isogai, and K. Hinata (2000). "The S receptor kinase determines self-incompatibility in Brassica stigma". Nature. 403 (6772): 913–6. Bibcode:2000Natur.403..913T. doi:10.1038/35002628. PMID 10706292.CS1 maint: multiple names: authors list (link)
- Schopfer, C. R. & J. B. Nasrallah (2000). "Self-incompatibility. Prospects for a novel putative peptide-signaling molecule". Plant Physiol. 124 (3): 935–9. doi:10.1104/pp.124.3.935. PMC 1539289. PMID 11080271.
- Takayama, S., H. Shimosato, H. Shiba, M. Funato, F.-E. Che, M. Watanabe, M. Iwano, and A. Isogai (2001). "Direct ligand–receptor complex interaction controls Brassica self-incompatibility". Nature. 413 (6855): 534–8. Bibcode:2001Natur.413..534T. doi:10.1038/35097104. PMID 11586363.CS1 maint: multiple names: authors list (link)
- Murase, K., H. Shiba, M. Iwano, F. S. Che, M. Watanabe, A. Isogai, and S. Takayama (2004). "A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling". Science. 303 (5663): 1516–9. Bibcode:2004Sci...303.1516M. doi:10.1126/science.1093586. PMID 15001779.CS1 maint: multiple names: authors list (link)
- Baumann, U.; Juttner, J.; Bian, X.; Langridge, P. (2000). "Self-incompatibility in the Grasses" (PDF). Annals of Botany. 85 (Supplement A): 203–209. doi:10.1006/anbo.1999.1056.
- Ganders, F. R. (1979). "The biology of heterostyly". New Zealand Journal of Botany. 17 (4): 607–635. doi:10.1080/0028825x.1979.10432574.
- Ornduff, R. & S. G. Weller (1975). "Pattern diversity of incompatibility groups in Jepsonia heterandra (Saxifragaceae)". Evolution. 29 (2): 373–5. doi:10.2307/2407228. JSTOR 2407228.
- Ganders, F. R. (1976). "Pollen flow in distylous populations of Amsinckia (Boraginaceae)". Canadian Journal of Botany. 54 (22): 2530–5. doi:10.1139/b76-271.
- Spieth, P. T. (1971). "A necessary condition for equilibrium in systems exhibiting self-incompatible mating". Theoretical Population Biology. 2 (4): 404–18. doi:10.1016/0040-5809(71)90029-3. PMID 5170719.
- Glaettli, M. (2004). Mechanisms involved in the maintenance of inbreeding depression in gynodioecious Silene vulgaris (Caryophyllaceae): an experimental investigation. PhD dissertation, University of Lausanne.
- Bateman, A. J. (1956). "Cryptic self-incompatibility in the wallflower: Cheiranthus cheiri L". Heredity. 10 (2): 257–261. doi:10.1038/hdy.1956.22.
- Travers, S. E. & S. J. Mazer (2000). "The absence of cryptic self-incompatibility in Clarkia unguiculata (Onagraceae)". American Journal of Botany. 87 (2): 191–6. doi:10.2307/2656905. JSTOR 2656905. PMID 10675305.
- Seavey, S. F. & K. S. Bawa (1986). "Late-acting self-incompatibility in angiosperms". Botanical Review. 52 (2): 195–218. doi:10.1007/BF02861001.
- Sage, T. L., R. I. Bertin, and E. G. Williams (1994). "Ovarian and other late-acting self-incompatibility systems." In E. G. Williams, R. B. Knox, and A. E. Clarke [eds.], Genetic control of self-incompatibility and reproductive development in flowering plants, 116–140. Kluwer Academic, Amsterdam.
- Sage, T. L., F. Strumas, W. W. Cole, and S. C. H. Barrett (1999). "Differential ovule development following self- and cross-pollination: the basis of self-sterility in Narcissus triandrus (Amaryllidaceae)". American Journal of Botany. 86 (6): 855–870. doi:10.2307/2656706. JSTOR 2656706. PMID 10371727.CS1 maint: multiple names: authors list (link)
- Sage, T. L. & E. G. Williams (1991). "Self-incompatibility in Asclepias". Plant Cell Incomp. Newsl. 23: 55–57.
- Sparrow, F. K. & N. L. Pearson (1948). "Pollen compatibility in Asclepias syriaca". J. Agric. Res. 77: 187–199.
- Lipow, S. R. & R. Wyatt (2000). "Single gene control of postzygotic self-incompatibility in poke milkweed, Asclepias exaltata L". Genetics. 154 (2): 893–907. PMC 1460952. PMID 10655239.
- Bittencourt JR; N. S.; P. E. Gibbs & J. Semir (2003). "Histological study of post-pollination events in Spathodea campanulata Beauv. (Bignoniaceae), a species with late-acting self-incompatibility". Annals of Botany. 91 (7): 827–834. doi:10.1093/aob/mcg088. PMC 4242391. PMID 12730069.
- Klekowski, E. J. (1988). Mutation, Developmental Selection, and Plant Evolution. Columbia University Press, New York.
- Waser N. M. & M. V. Price (1991). "Reproductive costs of self-pollination in Ipomopsis aggregata (Polemoniaceae): are ovules usurped?". American Journal of Botany. 78 (8): 1036–43. doi:10.2307/2444892. JSTOR 2444892.
- Nic Lughadha E. (1998). "Preferential outcrossing in Gomidesia (Myrtaceae) is maintained by a post-zygotic mechanism." In: S. J. Owens and P. J. Rudall [eds.], Reproductive biology in systematics, conservation and economic botany. London: Royal Botanic Gardens, Kew, 363–379.
- Igic, B. & J. R. Kohn (2006). "Bias in the studies of outcrossing rate distributions". Evolution. 60 (5): 1098–1103. doi:10.1111/j.0014-3820.2006.tb01186.x. PMID 16817548.
Further reading
- Charlesworth D; Vekemans X; Castric V; Glémin S (October 2005). "Plant self-incompatibility systems: a molecular evolutionary perspective". New Phytol. 168 (1): 61–9. doi:10.1111/j.1469-8137.2005.01443.x. PMID 16159321.
- Lan XG; Yu XM; Li YH (July 2005). "[Progress in study on signal transduction of gametophytic self-incompatibility]". Yi Chuan (in Chinese). 27 (4): 677–85. PMID 16120598.
- Boavida LC; Vieira AM; Becker JD; Feijó JA (2005). "Gametophyte interaction and sexual reproduction: how plants make a zygote". Int. J. Dev. Biol. 49 (5–6): 615–32. doi:10.1387/ijdb.052023lb. PMID 16096969.