Transcription initiation protein SPT3 homolog

Transcription initiation protein SPT3 homolog is a protein that in humans is encoded by the SUPT3H gene.[5][6][7]

SUPT3H
Identifiers
AliasesSUPT3H, SPT3, SPT3L, SPT3 homolog, SAGA and STAGA complex component
External IDsOMIM: 602947 MGI: 1923723 HomoloGene: 121570 GeneCards: SUPT3H
Gene location (Human)
Chr.Chromosome 6 (human)[1]
Band6p21.1Start44,809,317 bp[1]
End45,377,953 bp[1]
RNA expression pattern


More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

8464

109115

Ensembl

ENSG00000196284

ENSMUSG00000038954

UniProt

O75486

n/a

RefSeq (mRNA)

NM_178652
NM_001357320

RefSeq (protein)

n/a

Location (UCSC)Chr 6: 44.81 – 45.38 MbChr 17: 44.78 – 45.12 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Interactions

Transcription initiation protein SPT3 homolog has been shown to interact with GCN5L2,[8][9] TAF6L,[9] TADA3L,[9] TAF5L,[9] SF3B3,[9] SUPT7L,[9] Myc,[10] TAF9,[9] Transformation/transcription domain-associated protein,[9] TAF12,[9] TAF10,[8][9] TAF4[8] and DDB1.[9]

Model organisms

Model organisms have been used in the study of SUPT3H function. A conditional knockout mouse line called Supt3tm1a(EUCOMM)Hmgu was generated at the Wellcome Trust Sanger Institute.[11] Male and female animals underwent a standardized phenotypic screen[12] to determine the effects of deletion.[13][14][15][16] Additional screens performed: - In-depth immunological phenotyping[17]

gollark: What do you mean "a priori"? Just come up with some ridiculous """pure logical proof""" that the afterlife exists regardless of observations of it?
gollark: If there's no way to detect something, it doesn't meaningfully exist.
gollark: And yes, because you can enjoy things while not dead.
gollark: It's not unhealable. As far as I know, people mostly deal with it eventually.
gollark: It is of course not exactly very easy to know if there *is* no other way.

References

  1. GRCh38: Ensembl release 89: ENSG00000196284 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000038954 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Ogryzko VV, Kotani T, Zhang X, Schiltz RL, Howard T, Yang XJ, Howard BH, Qin J, Nakatani Y (Jul 1998). "Histone-like TAFs within the PCAF histone acetylase complex". Cell. 94 (1): 35–44. doi:10.1016/S0092-8674(00)81219-2. PMID 9674425.
  6. Martinez E, Kundu TK, Fu J, Roeder RG (Sep 1998). "A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID". The Journal of Biological Chemistry. 273 (37): 23781–5. doi:10.1074/jbc.273.37.23781. PMID 9726987.
  7. "Entrez Gene: SUPT3H suppressor of Ty 3 homolog (S. cerevisiae)".
  8. Brand M, Moggs JG, Oulad-Abdelghani M, Lejeune F, Dilworth FJ, Stevenin J, Almouzni G, Tora L (Jun 2001). "UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation". The EMBO Journal. 20 (12): 3187–96. doi:10.1093/emboj/20.12.3187. PMC 150203. PMID 11406595.
  9. Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, Chait BT, Roeder RG (Oct 2001). "Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo". Molecular and Cellular Biology. 21 (20): 6782–95. doi:10.1128/MCB.21.20.6782-6795.2001. PMC 99856. PMID 11564863.
  10. Liu X, Tesfai J, Evrard YA, Dent SY, Martinez E (May 2003). "c-Myc transformation domain recruits the human STAGA complex and requires TRRAP and GCN5 acetylase activity for transcription activation". The Journal of Biological Chemistry. 278 (22): 20405–12. doi:10.1074/jbc.M211795200. PMC 4031917. PMID 12660246.
  11. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  12. "International Mouse Phenotyping Consortium".
  13. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  14. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  15. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  16. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207. PMID 23870131.
  17. "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.