Robert Arnott Wilson
Robert Arnott Wilson (born 1958) is a retired mathematician in London, England, who is best known for his work on classifying the maximal subgroups of finite simple groups and for the work in the Monster group. He is also an accomplished violin, viola and piano player, having played as the principal viola in the Sinfonia of Birmingham. Due to a damaged finger, he now principally plays the kora.[1]
Robert Arnott Wilson | |
---|---|
Nationality | British |
Alma mater | University of Cambridge |
Known for | |
Scientific career | |
Fields | Mathematics |
Institutions | Queen Mary, University of London |
Thesis | Maximal Subgroups of Some Finite Simple Groups (1983) |
Doctoral advisor | John Horton Conway |
Website | www |
Books
- Conway, John Horton; Curtis, Robert Turner; Norton, Simon Phillips; Parker, Richard A; Wilson, Robert Arnott (1985). Atlas of finite groups: maximal subgroups and ordinary characters for simple groups. Oxford University Press. ISBN 978-0-19-853199-9.
- An Atlas of Brauer Characters (London Mathematical Society Monographs) by Christopher Jansen, Klaus Lux, Richard Parker, Robert Wilson. Oxford University Press, USA (October 1, 1995) ISBN 0-19-851481-6
- Wilson, Robert A. (2009). The finite simple groups. Graduate Texts in Mathematics. 251. Berlin, New York: Springer-Verlag. doi:10.1007/978-1-84800-988-2. ISBN 978-1-84800-987-5. Zbl 1203.20012, 2007 preprint.
as editor
- Curtis, R.; Wilson, R.A., eds. (1998). The Atlas of Finite Groups: Ten Years On. London Mathematical Society Lectures Note Series, No. 249. Cambridge University Press. ISBN 978-0-521-57587-4; pbk
Selected articles
- Wilson, Robert A (1985). "The maximal subgroups of the O'Nan group". Journal of Algebra. 97 (2): 467–473. doi:10.1016/0021-8693(85)90059-6.
- with Peter B. Kleidman: Kleidman, Peter B; Wilson, Robert A (1988). "The maximal subgroups of J4". Proceedings of the London Mathematical Society. 3 (3): 484–510. doi:10.1112/plms/s3-56.3.484.
- with R. A. Parker: Parker, R.A; Wilson, R.A (1990). "The computer construction of matrix representations of finite groups over finite fields". Journal of Symbolic Computation. 9 (5–6): 583–590. doi:10.1016/S0747-7171(08)80075-2.
- with M. D. E. Conder and A. J. Woldar: Conder, M. D. E; Wilson, R. A; Woldar, A. J (1992). "The symmetric genus of sporadic groups". Proceedings of the American Mathematical Society. 116 (3): 653–663. doi:10.1090/S0002-9939-1992-1126192-2.
- Wilson, Robert A (1996). "Standard generators for sporadic simple groups". Journal of Algebra. 184 (2): 505–515. doi:10.1006/jabr.1996.0271.
- "Construction of Finite Matrix Groups". In: Computational Methods for Representations of Groups and Algebras: Euroconference in Essen (Germany), April 1-5, 1997. Progress in Mathematics, vol. 173. Springer Base AG. 1999. pp. 61–87. ISBN 978-3-0348-9740-2.
- "A Construction of the Monster Group over GF (7), and an Application. Preprint, 22". 2000. Cite journal requires
|journal=
(help) - "The Monster is a Hurwitz group" (PDF). Journal of Group Theory. 4 (4): 367–374. 2001.
- "Computing in the Monster". Groups, combinatorics & geometry (Durham, 2001). 2002. pp. 327–335.
- with Petra E. Holmes: Holmes, P.E; Wilson, R.A (2002). "A new maximal subgroup of the Monster". Journal of Algebra. 251 (1): 435–447. doi:10.1006/jabr.2001.9037.
- "Computing in the Fischer-Griess Monster; Individual Grant Review GR/R95265/01" (PDF). 2004.
- Lepowsky, James; McKay, John; Tuite, Michael P., eds. (2010). "New computations in the Monster". Moonshine: The First Quarter Century and Beyond; Proceedings of a Workshop on the Moonshine Conjectures and Vertex Algebras. London Mathematical Society Lecture Note Series: 372. Cambridge University Press. pp. 393–403. ISBN 978-0-521-10664-1; pbk
- Wilson, Robert A (2011). "Conway's group and octonions". Journal of Group Theory. 14 (1): 1–8. doi:10.1515/jgt.2010.038.
- "Introduction to the Finite Simple Groups". In: Algebra, Logic and Combinatorics. LTTC Advanced Mathematical Series, vol. 3. World Scientific. 2016. pp. 41–68.
- Wilson, Robert A (January 2017). "Maximal subgroups of sporadic groups". arXiv:1701.02095 [math.GR].
gollark: rust forever. Rust/. Rust
gollark: well. quite works This
gollark: Yes.
gollark: https://xkcd.com/
gollark: Backwards but english and with Rust encoded in invisible characters in it.
References
- "Robert Wilson's web page". Robert Wilson.
External links
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.